multi objective particle swarm optimization
در نشریات گروه فنی و مهندسی-
Scaffold geometry plays a crucial role in determining its mechanical strength, as changes in shape can significantly impact its properties. Additionally, porosity, which varies with geometry, weakens the scaffold's mechanical performance. This study investigates the influence of scaffold geometry on mechanical properties and porosity in biomedical applications. Seven distinct geometries were designed using identical materials and fabricated through 3D printing. The scaffolds underwent compressive strength testing and finite element simulations to evaluate their load-bearing capacity and porosity. Among the designs, hexagonal and circular geometries demonstrated superior mechanical performance and controlled porosity. A total of 81 hexagonal and 27 circular scaffold samples were analyzed using Abaqus software. Initially, Response Surface Methodology (RSM) was employed to model the relationship between pressure and porosity, identifying the optimal design space with high predictive accuracy (R² > 96%). Then, a multi-objective optimization process using the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm was implemented. The results revealed a Pareto front for each geometry, enabling the selection of scaffolds with specific load-bearing capacities and maximum porosity levels. Validation tests showed a mean error of 3.4% for circular geometries and 3.53% for hexagonal geometries, demonstrating the reliability of the simulation and optimization methods. This comprehensive approach integrates experimental, simulation, and optimization techniques, offering a robust framework for designing high-performance scaffolds tailored to biomedical needs.Keywords: Scaffold, Multi Objective Particle Swarm Optimization, Additive Manufacturing, Finite Element, Bio Printing
-
This paper introduces a novel approach to improving voltage profiles in a 22-bus radial distribution network by integrating distributed generation (DG) sources with advanced optimization techniques. By leveraging multi-objective particle swarm optimization (MOPSO) alongside soft open points (SOP) devices, this study effectively reduces power losses, total harmonic distortion (THD), and voltage imbalance. The proposed method not only optimizes the allocation and sizing of DG units but also strategically deploys SOP devices to enhance operational flexibility. Simulation results conducted in MATLAB environment demonstrate that the integration of SOPs significantly improves the overall voltage profile, minimizes active power losses, and substantially reduces THD levels across the network. Furthermore, the coordinated optimization approach enhances the resilience and stability of the distribution system under varying load conditions. The improvement in power quality indices, including voltage regulation and harmonic performance, highlights the practical viability and technical effectiveness of combining MOPSO optimization techniques with SOP deployment for resilient and efficient distribution network management.
Keywords: Soft Open Points, Multi-Objective Particle Swarm Optimization, Voltage Source Converters, Power Loss, Voltage Unbalance, Total Harmonic Distortion -
In today's competitive market, manufacturers and service providers are continuously seeking ways to reduce costs and save time to gain a competitive edge. One of the most significant challenges they face is the vehicle routing problem (VRP), which is crucial due to its direct impact on the delivery time of services or products. Efficient vehicle routing not only enhances delivery performance but also optimizes the overall network, resulting in reduced operational costs. This study focuses on evaluating the VRP specifically for trucks while incorporating sustainability indicators into the analysis. The key sustainability indicators considered include social, economic, and environmental aspects. By integrating these indicators, the study aims to address multiple objectives simultaneously: reducing delivery time, minimizing costs, and mitigating the environmental impact of vehicle operations.The primary objective of this research is to minimize overall costs, fuel consumption, and route complexity associated with truck deliveries. Given the growing concern over environmental issues, there is a strong emphasis on improving methods to reduce greenhouse gas (GHG) emissions and streamline logistics processes. The research addresses these concerns by proposing a model that not only aims to enhance operational efficiency but also contributes to environmental protection and social responsibility.To achieve these objectives, the study employs advanced optimization techniques, specifically the non-dominated sorting genetic algorithm (NSGA-II) and multi-objective particle swarm optimization (MOPSO). These methods are utilized to solve the VRP while balancing the trade-offs between various objectives, such as cost reduction, fuel efficiency, and route optimization.The results of the study indicate that the proposed model successfully improves aspects of environmental protection and social responsibility while simultaneously addressing economic concerns. The integration of sustainability indicators into the vehicle routing problem provides a comprehensive approach to optimizing logistics operations, highlighting the importance of considering environmental and social factors alongside economic performance.Overall, this research contributes to the field by offering a refined model for tackling the VRP, with a focus on sustainability. The findings underscore the potential for optimization algorithms to drive improvements in both operational efficiency and environmental stewardship, ultimately supporting more sustainable and socially responsible practices in the transportation and logistics industry.Keywords: Exchange Locations, Vehicle Routing Problem, Algorithms, Non-Dominated Sorting Genetic Algorithm-II, Multi-Objective Particle Swarm Optimization, Metaheuristic, Time Constraint
-
استفاده گسترده از سیستم های تهویه مطبوع خانگی (RAC) در سیستم های قدرت مدرن باعث افزایش پدیده بازیابی تاخیری ولتاژ ناشی از خطا (FIDVR) شده ا ست. وقوع این پدیده منجر به ناپایداری ولتاژ کوتاه مدت شده و گاهی نیز به فروپاشی ولتاژ می انجامد. برای مقابله با این رویداد، جبران سازهای موازی مانند SVC و STATCOM می توانند مورد استفاده قرار گیرند. در این مقاله، یک روش ترکیبی داده محور براساس جایابی منابع ولت-آمپر راکتیو (VAR) برای کاهش رویداد FIDVR پیشنهاد شده است. این روش از شاخص جدید و کارآمدی برای ارزیابی ولتاژ پس از خطا استفاده کرده و با درنظرگرفتن محدودیت های اقتصادی و فنی، محل و اندازه بهینه منابع VAR را تعیین می کند. شبکه عصبی چند لایه پرسپترون (MLP) برای حل مسئله نگاشت چند بعدی با درنظرگرفتن توان های راکتیو تزریق شده به باس ها استفاده شده است. سپس، بهینه سازی چند هدفه برای شناسایی اندازه بهینه منابع برای مقابله با ناپایداری ولتاژ کوتاه مدت و نیز جلوگیری از رویدادهای FIDVR با روش های بهینه سازی هوشمند پیشنهاد شده است. ابتدا بهینه سازی برای تابع تک هدفه با وزن های تعیین شده توسط الگوریتم PSO انجام شده و سپس نتایج با الگوریتم کلونی زنبور عسل مصنوعی (ABC)، الگوریتم کلونی مورچه ها برای حوزه های پیوسته (ACOR) و الگوریتم تکامل تفاضلی (DE) مقایسه شده است. همچنین این مقاله به شناسایی یک جبهه پارتو از راه حل های نامغلوب با استفاده از بهینه سازی ازدحام ذرات چندهدفه (MOPSO) می پردازد. روش پیشنهاد شده بر روی سیستم 39 باس IEEE با مدل بار تجمیع شده دینامیکی موتورهای سیستم تهویه مطبوع آزمایش شده است. نتایج نشان می دهند که این روش در حل مسائل بهینه سازی توان راکتیو و کاهش اثرات FIDVR بسیار موثر است.
کلید واژگان: الگوریتم بهینه سازی ازدحام ذرات چندهدفه، بازیابی تاخیری ولتاژ ناشی از خطا، سیستم های تهویه مطبوع خانگی، مدل بار مرکب، ولت، آمپر راکتیو.Journal of Intelligent Procedures in Electrical Technology, Volume:16 Issue: 62, Summer 2025, PP 201 -221The widespread use of residential air conditioning (RAC) systems in modern power systems has resulted in an increase in the phenomenon of fault-induced delayed voltage recovery (FIDVR). This phenomenon leads to short-term voltage instability and sometimes even voltage collapse. To address this issue, parallel FACTS devices such as SVC and STATCOM can be used. In this paper, a data-driven hybrid approach based on volt-ampere reactive (VAR) placement is proposed to reduce FIDVR events. This approach uses a new and efficient index for voltage evaluation after faults and determines the optimal location and size of VAR resources considering economic and technical constraints. A multi-layer perceptron (MLP) neural network is used to solve the multi-dimensional mapping problem considering reactive power injections into buses. Then, a multi-objective optimization is proposed to identify the optimal size of VAR resources to address short-term voltage instability and prevent FIDVR events using intelligent optimization methods. First, optimization is performed for the single-objective function with predefined weights by the PSO algorithm, and then the results are compared with the artificial bee colony (ABC) algorithm, ant colony optimization for continuous domains (ACOR), and differential evolution (DE) algorithms. Additionally, this paper focuses on identifying a Pareto front of non-dominated solutions using multi-objective particle swarm optimization (MOPSO). The proposed approach is tested on the 39-bus IEEE system considering a time-varying dynamic model for residential air conditioning loads. The results show that this approach is highly effective in solving reactive power optimization problems and reducing FIDVR effects.
Keywords: Composite Load Model, Fault-Induced Delayed Voltage Recovery, Multi-Objective Particle Swarm Optimization, Residential Air Conditioners, Volt, Ampere Reactive -
مجله آب و فاضلاب، پیاپی 145 (خرداد و تیر 1402)، صص 124 -137
کنترل غلظت کلر باقیمانده در بازه مطلوب در سراسر شبکه های توزیع آب، می تواند باعث تخریب پاتوژن های بالقوه مضر بدون ایجاد اثرات ضد سلامت انسان و محصولات جانبی سمی کلر شود. بنابراین، برنامه ریزی بهینه ایستگاه های تزریق کلر در این شبکه ها برای اطمینان از تامین آب سالم با کمترین مقدار کلر مصرفی، اهمیت حیاتی دارد. هدف از این پژوهش، توسعه یک مدل بهینه سازی چند هدفه به منظور کاهش نرخ تزریق کلر هم زمان با کاهش احتمال نقض کلر در گره ها در شبکه های توزیع آب بود که در بستر نرم افزاری MATLAB-EPANET اجرا شد. به منظور به دست آوردن جبهه پارتوی موردنظر در یک شبکه واقعی (Brushy Plains)، الگوریتم های گروه میگوهای چند هدفه و بهینه سازی ازدحام ذرات چند هدفه به عنوان بهینه سازها به کار گرفته شدند. جبهه پارتوهای به دست آمده نشان دادند که در اغلب موارد، با افزایش نرخ تزریق کلر مقدار تابع احتمال نقض کلر در گره ها کاهش می یابد. در این پژوهش، به منظور اطمینان از تامین آب سالم، پاسخ دارای کمترین مقدار احتمال نقض کلر در گره ها در هر جبهه پارتو به عنوان پاسخ بهینه انتخاب شد. اگرچه پارتوی حاصل از بهینه سازی ازدحام ذرات چند هدفه، تنوع پاسخ بیشتری نسبت به پارتوی حاصل از الگوریتم گروه میگوهای چند هدفه دارد، پاسخ بهینه انتخاب شده در پارتوی الگوریتم گروه میگوهای چند هدفه دارای مقدار نرخ تزریق کلر کمتری نسبت به پاسخ بهینه انتخاب شده در پارتوی بهینه سازی ازدحام ذرات چند هدفه با مقدار یکسان احتمال نقض کلر در گره ها است. تحلیل نیم رخ های غلظت کلر باقیمانده متناظر با پاسخ بهینه الگوریتم گروه میگوهای چند هدفه در یک دوره نظارت 24 ساعته نشان داد که غلظت کلر در اغلب گره های شبکه Brushy Plains در بازه مطلوب 2/0 تا 8/0 میلی گرم در لیتر قرار دارد و غلظت کلر در 100 درصد گره های این شبکه در بازه 2/0 تا 6/1 میلی گرم در لیتر قرار دارد. همچنین نتایج این پژوهش نشان داد که پاسخ بهینه الگوریتم گروه میگوهای چند هدفه نسبت به نتایج پژوهش های قبلی، نرخ تزریق کلر کمتری دارد. به طور کلی، علاوه بر مزایای اقتصادی، به حداقل رساندن میزان تزریق کلر و احتمال نقض کلر در گره ها به طور هم زمان در سیستم های توزیع آب، اثرات نامطلوب بهداشتی محصولات جانبی کلر را نیز کاهش می دهد.
کلید واژگان: نرخ تزریق جرمی، احتمال نقض کلر در گره ها، الگوریتم گروه میگوهای چند هدفه، بهینه سازی ازدحام ذرات چند هدفهControl of residual chlorine concentration within a desirable range throughout water distribution systems can cause the destruction of potentially harmful pathogens without chlorine adverse health effects & its toxic by-products. Hence, optimal scheduling of booster chlorination stations in the WDSs to ensure healthy water supply with the lowest dose of chlorine consumption is vital. The aim of the present study is to develop a multi-objective optimization model in order to minimize the mass injection rate as well as the probability of chlorine violation in the WDSs, which has been implemented in the MATLAB-EPANET platform. Multi-objective krill herd and multi-objective particle swarm optimization algorithms have been utilized as optimizers to obtain the desired Pareto front in the real-scale Brushy Plains network. The resulted Pareto fronts showed that in most of their solutions, as long as the mass injection rate increased, the probability of chlorine violation decreased. In this study, the solution with the less PCV in each Pareto was selected as the optimal solution to assure the healthy water supply. Though the MOPSO resulted Pareto showed more solution diversity, MKH optimal solution has a better MIR function than MOPSO optimal solution with the same amount of PCV. Analyzing the residual chlorine concentration profiles of the monitoring period corresponding to the MKH optimal solution showed that the chlorine concentration of the most nodes of Brushy Plains network exist in the desirable range of 0.2 to 0.8 mg/L and the residual chlorine of 100% of nodes exist in the range of 0.2 to 1.6 mg/L. Also, the MKH results are superior to those of the previous studies in terms of the total mass injection rate. Generally, in addition to economic advantages, minimizing chlorine injection rate and the probability of chlorine violation simultaneously in the water distribution systems reduces the adverse health effects of the disinfectant by-products.
Keywords: Mass Injection Rate, Probability of Chlorine Violation, Multi-Objective Krill Herd Algorithm, Multi-objective Particle swarm optimization -
پل ها به عنوان پیوندهای مهم ارتباطی تمامی شبکه های جاده ای و خطوط راه آهن به حساب می آیند که سرمایه هنگفتی برای ساخت آنها مورد نیاز است. علاوه بر این، پل ها به عنوان نقاط مهم شریان های حیاتی به حساب می آیند. اگر پل ها به دلیل سن زیاد، فرسودگی، بار زیاد، شرایط آب و هوایی، بلایای طبیعی و غیره از بین بروند، کارهای تعمیراتی، بسیار پر هزینه تر از فعالیت های مربوط به حفظ و نگهداری از آنهاست. بودجه در دسترس برای بازسازی و تعمیر و نگهداری، معمولا برای حفظ وضعیت سیستم به حالت ثابت در تمام طول عمر پل کافی نیست. با توجه به تعداد زیاد پل های موجود و هزینه های زیاد تعمیر و نگهداری، امکان تعمیر و نگهداری همزمان همه پل ها وجود ندارد. همچنین به علت تخصیص بودجه های محدود در امر تعمیر و نگهداری، تعیین بهترین دوره تعمیر و نگهداری بهینه برای هر پل براساس نقص های موجود و اثربخشی دوره انتخابی بسیار مهم است. در این تحقیق با استفاده از محاسبه هزینه چرخه عمر پل های راه آهن به بررسی در مورد دوره های تعمیر و نگهداری بهینه پرداخته شده و زمان مناسب تعمیرات برای پل ها با توجه به کمترین میزان هزینه چرخه عمر در پلهای راه آهن با استفاده از الگوریتم فراابتکاری ازدحام ذرات چند هدفه بهینه سازی شده است.
کلید واژگان: پل، خطوط راه آهن، هزینه چرخه عمر، دوره بهینه تعمیر و نگهداری، الگوریتم فراابتکاری ازدحام ذرات چندهدفهThe bridges as important links are connected all road networks and railways That a huge investment is needed to build them. In addition, bridges are considered as important points of vital arteries. If the bridges due to old age, exhaustion, overload, weather conditions, natural disasters and etc. destroyed, repair works are much more costly than the budget needed for the maintenance of them. Available budgets for reconstruction and maintenance, usually is not enough to maintain a constant state throughout the lifetime of the bridges. Due to the large number of bridges and high maintenance costs, it is not possible to repair and pay for maintenance of bridges simultaneously. In this study, the life cycle cost is calculated based on maintenance period of railway using multi-objective particle swarm optimization algorithm. Sensitivity analysis, furthermore, is done on deterioration rate and reduction of deterioration rate and effect of these parameters on system performance are analyzed.
Keywords: railways bridges, life cycle cost, optimal maintenance, Multi-objective Particle swarm optimization -
Journal of Optimization in Industrial Engineering, Volume:14 Issue: 31, Summer and Autumn 2021, PP 83 -98In this research, a tri-objective mathematical model is proposed for the Transportation-Location-Routing problem. The model considers a three-echelon supply chain and aims to minimize total costs, maximize the minimum reliability of the traveled routes and establish a well-balanced set of routes. In order to solve the proposed model, four metaheuristic algorithms, including Multi-Objective Grey Wolf Optimizer (MOGWO), Multi-Objective Water Cycle Algorithm (MOWCA), Multi-objective Particle Swarm Optimization (MOPSO) and Non-Dominated Sorting Genetic Algorithm- II (NSGA-II) are developed. The performance of the algorithms is evaluated by solving various test problems in small, medium, and large scale. Four performance measures, including Diversity, Hypervolume, Number of Non-dominated Solutions, and CPU-Time, are considered to evaluate the effectiveness of the algorithms. In the end, the superior algorithm is determined by Technique for Order of Preference by Similarity to Ideal Solution method.Keywords: Transportation-Location-Routing, reliability, Multi-Objective Grey Wolf Optimizer, Multi-Objective Water Cycle Algorithm, Multi-objective particle swarm optimization, Non-Dominated Sorting Genetic Algorithm- II
-
Installation of Shunt Capacitor Banks (SCBs) and Voltage Regulators (VRs) within distribution system is one of the most effective solutions in reactive power control for improving the voltage profile and reducing power losses along the feeder. However, the presence of the VRs can deteriorate the Voltage Stability Margin (VSM) in distribution feeders. To address this issue, this paper proposes a multi-objective programming model for the simultaneous optimal allocation of VRs and SCBs in the distribution network to improve the voltage profile and to minimize power losses and installation costs. In the proposed model, a Voltage Stability Index (VSI) is considered to prevent voltage instability during SCBs/VRs allocation. A new Modified Multi-Objective Particle Swarm Optimization (MMOPSO) algorithm which includes a dynamic inertia weight and mutation operator is proposed to obtain the optimal solutions as a Pareto set. Thereinafter, a Fuzzy Satisfaction Method (FSM) determines the optimal solution. A practical long radial distribution feeder has been employed to demonstrate the efficiency and efficacy of the proposed model along with a comparison between the proposed MMOPSO and the original MOPSO.Keywords: Allocation, Capacitor bank, Multi-objective Particle swarm optimization, Voltage Regulator, Voltage Stability Enhancement
-
پوشش دهی با استفاده از کوبش لیزری، از جمله روش های جوشکاری ضربه یی است که از اصول حاکم بر جوشکاری حالت جامد تبعیت می کند و متکی بر تاثیر سرعت بسیار بالای برخورد ورق ها و تشکیل جت حاصل از سیلان هیدرودینامیکی سطوح در نقطه ی برخورد است. در این روش انرژی لازم برای حرکت ورق پرنده، توسط فشار پلاسمای ایجاد شده به واسطه ی تابش لیزر بر سطح آن، تولید می شود. در این مقاله سعی شده ابتدا به مدل سازی این فرایند و صحت یابی آن بر مبنای نتایج حاصل از آزمایش تجربی پرداخته شود و سپس در ضخامت مشخصی از ورق پرنده، با استفاده از الگوریتم چندمنظوره ی بهینه سازی ازدحام ذرات چندهدفه، وضعیت جوش حاصله از طریق این فرایند با تغییر در فشار حاصل از تابش لیزر، ارتفاع و پهنای شیار و برمبنای محاسبه ی سرعت و زاویه ی برخورد ورق ها و نحوه ی قرارگیری آن در پنجره، جوش پذیری و بیشینه سازی پهنای شیار بهینه شود. انجام این پژوهش، علاوه بر ارائه ی روشی نوین و کاربردی در فرایند پوشش دهی با استفاده از کوبش لیزری، سبب ارائه ی راهکاری به منظور کاهش هزینه و زمان لازم برای انتخاب مشخصات شیار مورد نیاز در راستای انجام پوشش دهی در شرایط بهینه می شود.
کلید واژگان: جوشکاری با استفاده از کوبش لیزری، پوشش دهی، پنجره جوش پذیری، الگوریتم بهینه سازی ازدحام ذرات چندهدفهLaser shock welding process has recently attracted the attention of many researchers. Similar to explosive and magnetic welding, this process may also be used for impact welding using solid state welding principle. Impact welding is based on the influence of high-velocity collision of two base metals and generation of metallurgical atomic bonding in the solid phase at the contact area at ambient temperature. This process is also used to clad a sheet metal with a thin layer of other metal, named flyer plate. The base metal is serrated with certain angle and depth and the flyer plate is moved rapidly to collide with the base plate to generate bonding. The energy required to move the flyer plate, is produced by plasma pressure created by laser impact on the surface of the flyer plate. The main advantage of this connection is its capability to attach two dissimilar metals in order to enhance physical, chemical, or mechanical properties on one side of a cheaper metal.Same as other welding methods, it is very important to forecast and optimize the weld quality obtained by this process. Hence, finite element method using ABAQUS software, was employed to simulate the laser welding or cladding process in this research and verified by experimental data. Impact speed, serration angle and depth are the main affecting parameters on weld quality. Therefore, multi-objective particle swarm optimization (MOPSO) algorithm for a certain thickness of the flyer plate was utilized to maximize the welded area of two plates and minimize the cost of machining the base plate for making serration using the data generated by finite element analysis, linked to MATLAB for optimization of these objectives. The optimization results indicate an increase in joined area at the connection point as well as reduced number of grooves which leads to decrease in manufacturing cost.
Keywords: Laser shock welding, cladding, weldability window, multi-objective particle swarm optimization -
Maintenance costs are one of the major costs in plants and companies. The observation in many cases illustrates the lack of plans or mistakes in maintenance activities that incurred great costs. In this study, the number of equipment failures have been determined. Then the failure rate and reliability of each equipment are calculated. The third step calculates total system reliability so the initial plan is presented. After that, by using the obtained information, the sustainability aspects of the program will generate and the maintenance costs and sustainability functions will assess. At the end, this multi-objective optimization problem is solved by MOPSO algorithm and the results are compared with a simulation method. As a result, with this reliability centered maintenance program, the reliability of each equipment, as well as the whole system are improved; economic aspect of sustainability and customer satisfaction are increased; environmental pollutions and maintenance costs are decreased by offering more reliability based program; a scheduling plan for each maintenance procedures is provided and also more stable internet connection is established by reducing the system failures.Keywords: Sustainability, Reliability, Maintenance, Risk Attitude, Multi-objective Particle Swarm Optimization, Internet Telecommunications Equipment
-
In this article, a multi objective model is presented to select and allocate the order to suppliers in uncertainty condition and in a multi source, multi customer and multiproduct case in a multi period state at two levels of supply chain. Objective functions considered in this study as the measures to evaluate suppliers are cost including purchase, transportation and ordering costs, timely delivering, shipment quality or wastages which are amongst major quality aspects, partial and general coverage of suppliers in respect of distance and finally suppliers weights making the products orders amount more realistic. The major limitations are price discount for products by suppliers which are calculated using signal function. In addition, suppliers weights in the fifth objective function is calculated using fuzzy Topsis technique. Lateness and wastes parameters in this model are considered as uncertain and random triangular fuzzy number. Finally the multi objective model is solved using two multi objective algorithms of Non-dominated Sorting Genetic Algorithm (NSGA-II) and Particle Swarm Optimization (PSO) and the results are analyzed using quantitative criteria Taguchi technique was used to regulate the parameters of two algorithms.Keywords: Allocation of order to supplier, supplier selection, fuzzy Topsis, signal function discount, Non Dominated Sorting Genetic Algorithm, Multi Objective Particle Swarm Optimization
-
Scientia Iranica, Volume:24 Issue: 4, 2017, PP 1810 -1820In this study, multi-criteria shape optimization of an asymmetrical doublecurvature arch dam is presented. Simultaneous cost minimization of dam construction and maximum allowable tensile stress are investigated for an economical and safe design approach in the current study. Pareto front method was used to balance both the economy and safety of the design simultaneously, which can be dicult for both analysts and decision-makers. A non-dominated solution based on the important parameters of dam analysis and design is presented. To help decision-makers in their decision, two diff erent methods are proposed. These methods for the case of an arch dam are Lombardi coecient and equilibrium point methods. The obtained results indicate that these two methods can be helpful for designers without experience and information of previous designs.Keywords: Multi-objective particle swarm optimization, Conic function, Pareto front, Concrete arch dam, Safety criteria, Economic criteria, decision-making
-
مهم ترین مشکل در فرآیند لپنکاری، پایین بودن نرخ برداشت ماده است که سبب افزایش هزینه و زمان تولید می گردد. بنابراین در فرآیند لپنکاری، انتخاب شرایطی که بتواند علاوه بر تولید قطعاتی با عدم تختی و زبری سطح موردنیاز، نرخ برداشت ماده بالایی نیز داشته باشد بسیار مهم و ضروری است. در این تحقیق در فرآیند لپنکاری تخت یک طرفه، اثر پارامترهای اندازه ذرات ساینده، درصد وزنی ذرات ساینده در دوغاب لپنکاری و فشار لپنکاری بر نرخ برداشت ماده، عدم تختی و زبری سطح قطعاتی از جنس فولاد 440c به روش تجربی (آزمایشگاهی) مورد بررسی قرار گرفته است. در ادامه توسط شبکه عصبی مصنوعی، اثر پارامترهای مذکور بر نرخ برداشت ماده، عدم تختی و زبری سطح قطعات لپنکاری شده، مدلسازی شده و در نهایت با استفاده از الگوریتم بهینه سازی چندهدفه ازدحام ذرات به بهینه سازی هم زمان نرخ برداشت ماده، زبری سطح و تختی قطعات لپنکاری شده پرداخته و جبهه پارتو مربوطه، بدست آورده شده است. نتایج به دست آمده نشان می دهند که با استفاده از الگوریتم بهینه سازی چندهدفه ازدحام ذرات می توان قطعاتی با زبری سطح و تختی مورد نیاز را با نرخ برداشت ماده بالا تولید کرد. درنتیجه با استفاده از این روش علاوه بر ایجاد قطعاتی باکیفیت مطلوب، هزینه و زمان تولید نیز کاهش می یابد.کلید واژگان: لپنکاری، بهینه سازی چندهدفه ازدحام ذرات، زبری سطح، نرخ برداشت ماده، تختیThe most essential problem in lapping process is low material removal rate which leads to increase in production costs and time. Thus, in this process, it's essential to select a condition that besides producing pieces with required flatness and roughness, has a high material removal rate. In this research, effects of parameters such as abrasive particle size, abrasive particles concentration in slurry, and lapping pressure on material removal rate, flatness and surface roughness were studied by experimental method in single sided lapping of flat workpieces made of 440c steel. In the following, effect of aforementioned parameters on material removal rate, flatness and surface roughness of lapped surface has been modeled using artificial neural network. Finally, by exerting multi-objective particle swarm optimization, simultaneous optimization of material removal rate, surface roughness and flatness of lapping pieces has been conducted and related Pareto front has been obtained. Obtained results show that by using Multi-objective particle swarm optimization algorithm we can produce workpieces with required surface roughness and flatness with high material removal rate. Consequently, by using this method moreover producing workpieces with desired quality, production cost and time would decrease.Keywords: Lapping, Multi-Objective Particle Swarm Optimization, Surface Roughness, material removal rate, Flatness
-
Many researches in inventory control area of knowledge have been focused on single objective and multi-objective problem of determining the economic quantity of order. In single objective problems, costs were considered as the objective. However, multi-objective problems have not been well investigated. For instance, there are no hint to transportation cost, budget, or holding costs, or only capacity and demand constraints have been considered in these researches. This study focuses on developing a model accompanied by costs, quality and the time of delivery.The economic order quantity of multi-product from multi-supplier in multi-period under uncertainty in demand and discounted prices are considered in this paper. In first step, a mathematical model is developed for this problem. This mathematical model is solved by using multi-objective optimization method i.e. goal programming. Then, a meta-heuristic method based on multi-objective particle swarm optimization is proposed. Results of the small size numerical examples show that solutions found by using the proposed meta-heuristic method are in average, 5% worse than solutions found by using the mathematical methods; however, it needs much lower computational time.Keywords: Economic order quantity, Discounted price, Multi-objective particle swarm optimization
-
دراین مقاله بهینهسازی چندهدفه پانلهای ساندویچی باهسته باز و منشوری مورد بررسی قرارگرفته است. نامگذاری این پانلها براساس تعداد موجهای هسته (n) صورت میگیرد. پانل به عنوان یک مبدل حرارتی درنظرگرفته شده که همزمان تحت بارگذاری طولی نیز قرار دارد. الگوریتم بهینهسازی دوهدفه گروه ذرات(MOPSO) با درنظرگرفتن وزن وشاخص انتقال حرارت به عنوان توابع هدف استفاده گردیده است. بهینه سازی بگونهای انجام میشود تا پانل ضمن اینکه دچار تسلیم وکمانش در صفحه های رویه وهسته در بارگذاری های مختلف نمیشود، دارای کمترین وزن و در عینحال بیشترین شاخص انتقال حرارت نیز باشد. نتایج نشان داد دو پانل با1=n و7=n، پانلهای مناسب در بهینهسازی یکهدفه و دوهدفه میباشند. همچنین، بیشترین شاخص انتقال حرارت بدست آمده توسط یک پانل مشخص در بارگذاری های مختلف تقریبا یکسان است. نمودارهای پرتوی حاصل شده از بهینه سازی دوهدفه دارای دو ناحیه متمایز بوده که در یک ناحیه افزایش وزن منجر به افزایش شدید شاخص انتقال حرارت، و در ناحیه دیگر این شاخص تقریبا ثابت میماند. این نمودارها ابزاری مناسب جهت انتخاب پانل و ابعادهندسی آن با توجه به اهمیت هریک از توابع هدف میباشند. مقایسه نتایج بیانگرکارائی روشPSO دربهینهسازی یکهدفه و دوهدفه این پانلها استکلید واژگان: پانل ساندویچی با هسته منشوری، قید تسلیم و کمانش، بهینه سازی دوهدفه گروه ذرات، منحنی پارتوIn this paper، multi-objective optimization of sandwich panels with open and prismatic core has been studied. Naming these panels is based on the number of corrugations (n) of the core. The panel is considered as a heat exchanger that is loaded under longitudinal loading simultaneously. Multi-objective particle swarm optimization (MOPSO) is used by considering weight and heat transfer index as objective function. Optimization is carried out so that the panel has minimum weight and maximum heat transfer index simultaneously، moreover it will not suffer from yielding and buckling in face and core plates. The results showed that two panels، i. e. n=1 and n=7 are very suitable in one-objective and two-objective optimizations. Also، maximum of heat transfer index obtained by a certain panel is nearly the same in various loadings. Pareto diagrams achieved out of two-objective optimization have two separate areas where in one area weight increase may cause an intense increase in heat transfer index and in another area this index remains almost constant. The diagrams are helpful in selecting suitable panel and its geometric dimensions based on significance of each objective functions. Comparing the results indicate efficiency of PSO method in one-objective and two-objective optimization of the panels.Keywords: Prismatic core sandwich panel, yielding, buckling criteria, Multi objective particle swarm optimization, pareto diagram
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.