به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

non linear regression

در نشریات گروه فنی و مهندسی
تکرار جستجوی کلیدواژه non linear regression در مقالات مجلات علمی
  • امیرحسین آدمی*، مهران نصرت الهی، علیرضا احمدی، علیرضا آروانه
    در این پژوهش ابتدا به اهمیت محاسبه دقیق تلفات سرعت پرتابگر و همچنین عوامل موثر بر آن ها پرداخته شد. داده های ورودی 15 پرتابگر ساخته شده توسط کشور مختلف در سراسر دنیا با تنوع در تعداد مراحل، ارتفاع مداری و جرم محموله جمع آوری گردید و به وسیله نرم افزار دقیق شبیه سازی مسیر، برنامه زاویه پیچ بهینه آنها استخراج و همچنین تلفات سرعت ناشی از گرانش زمین، پیشرانش و درگ محاسبه و ارایه شده است. در ادامه، با استفاده از روش رگرسیون غیر خطی، سه رابطه تحلیلی با خطای قابل قبول جهت تخمین تلفات سرعت ها استخراج و معرفی شده است که میتواند جایگزین استفاده از کد شبیه سازی مسیر در فاز طراحی مفهومی پرتابگر ها گردد. این روابط توسط اطلاعات دو پرتابگر خارج از داده های آماری استفاده شده در رگرسیون شامل سفیر و اپسیلون، مورد ارزیابی قرار گرفته و صحت سنجی الگوریتم با حداکثر خطای 12% و میانگین خطای کمتر از 6% مورد تایید قرار گرفته است.
    کلید واژگان: طراحی ماهواره بر، رگرسیون غیر خطی، تلفات سرعت، شبیه سازی مسیر ماهواره بر
    Amirhossein Adami *, Mehran Nosratollahi, Alireza Ahmadi, Alireza Arvaneh
    In this research, firstly, the importance of accurate calculation of satellite speed losses and the factors affecting them were discussed. The input data of 15 satellite launchers built by different countries around the world with variations in the number of stages, orbital height and payload mass were collected and by means of accurate path simulation software, their optimal turn angle program was extracted as well as speed losses due to earth's gravity, propulsion and the drag is calculated and presented. In the following, by using the non-linear regression method, three analytical relations with acceptable error have been extracted and introduced to estimate speed losses, which can replace the use of route simulation code in the conceptual design phase of carriers. These relationships have been evaluated by the information of two satellites outside the statistical data used in the regression, including Safir and Epsilon, and the accuracy of the algorithm has been confirmed with a maximum error of 12% and an average error of less than 6%.
    Keywords: Launch Vehicle Design, Non-Linear Regression, Velocity Losses, Launch Vehicle Path Simulation
  • احمد آریافر *، رضا میکائیل، فرامرز دولتی اردجانی، سینا شفیعی حق شناس، امیر جعفرپور
    A. Aryafar *, R. Mikaeil, F. Doulati Ardejani, S. Shaffiee Haghshenas, A. Jafarpour
    The process of pollutant adsorption from industrial wastewaters is a multivariate problem. This process is affected by many factors including the contact time (T), pH, adsorbent weight (m), and solution concentration (ppm). The main target of this work is to model and evaluate the process of pollutant adsorption from industrial wastewaters using the non-linear multivariate regression and intelligent computation techniques. In order to achieve this goal, 54 industrial wastewater samples gathered by Institute of Color Science & Technology of Iran (ICSTI) were studied. Based on the laboratory conditions, the data was divided into 4 groups (A-1, A-2, A-3, and A-4). For each group, a non-linear regression model was made. The statistical results obtained showed that two developed equations from the A-3 and A-4 groups were the best models with R2 being 0.84 and 0.74. In these models, the contact time and solution concentration were the main effective factors influencing the adsorption process. The extracted models were validated using the t-test and F-value test. The hybrid PSO-based ANN model (particle swarm optimization and artificial neural network algorithms) was constructed for modelling the pollutant adsorption process under different laboratory conditions. Based on this hybrid modeling, the performance indices were estimated. The hybrid model results showed that the best value belonged to the data group A-4 with R2 of 0.91. Both the non-linear regression and hybrid PSO-ANN models were found to be helpful tools for modeling the process of pollutant adsorption from industrial wastewaters.
    Keywords: Non-Linear Regression, intelligent computation, Wastewater, Modeling, pollutant
  • Reza Fatahi, Alkouhi, Babak Lashkar, Ara*
    The effects of non-dimensional parameters on the characteristic curves of a ram pump were evaluated in this study using an experimental model. To do so, after providing dependent and independent parameters using dimensional analysis, effect of each independent parameter was examined on the dependent parameter. Experimental observations showed that relative pumping discharge (q/QT), relative wasting discharge (Q/QT) and pump efficiency (η) were depended on length to diameter ratio of drive pipe (L/D) and pressure head ratio (h/hm). Impulse valve parameter (nD/v0) was depended on L/D, h/hm and Reynolds number of flow in drive pipe. Characteristic curves were presented for ram pump used in this study to estimate dependent parameters as function pressure head ratio for various ratios of length to diameter. In addition, characteristic equations of the used ram pump were introduced using nonlinear regression. Evaluation of results showed that the characteristic curves and equations can be designed a ram pump system with high accurate, and this design method can be proposed for any kinds of ram pumps to use in engineering purpose.
    Keywords: Ram pump, dimensional analysis, Characteristic curves, non-linear regression, and impulse valve
  • ارسلان قربانیان*، علی محمدزاده

    وجود ذرات معلق کوچکتر از 10 میکرون تاثیرات مخرب جدی بر روی سلامت افراد جامعه خواهد داشت. بنابراین داشتن اطلاعات در مورد میزان غلظت و نحوه پراکندگی آنها در شهر از اهمیت بسزایی برخوردار می باشد. امروزه از ایستگاه های آلودگی سنجی در محدوده شهر برای اندازه گیری غلطت آلاینده ها استفاده می شود. اگرچه این ایستگاه ها مقادیر آلودگی را با دقت بالایی اندازه گیری می کنند اما به دلیل محدودیت تعداد آنها از لحاظ مکانی پیوستگی ندارند. برای حل این مشکل می توان از تصاویر سنجش از دوری برای برآورد میزان غلظت ذرات و تولید نقشه های پراکندگی آلودگی استفاده نمود. در این تحقیق به جای استفاده از داده های عمق اپتیکی که به طور غالب در بررسی و مطالعه آلودگی توسط محققان مورد استفاده قرار می گیرد، از تصاویر بازتابندگی ظاهری سهم هواویز بدست آمده از تصاویر سنجنده مادیس استفاده می کنیم. مزیت استفاده از تصاویر بازتابندگی ظاهری سهم هواویز نسبت به داده های عمق اپتیکی پیوستگی مکانی و قدرت تفکیک مکانی بهتر آنها می باشد. تولید نقشه روزانه آلودگی برای 8 روز در سال 1396 در شهر تهران با استفاده از برقراری رگرسیون بین مقادیر بازتابندگی ظاهری سهم هواویز و مقادیر اندازه گیری شده غلظت ذرات معلق کوچکتر از 10 میکرون انجام شده است. بررسی عملکرد رگرسوین های خطی، نمایی، لگاریتمی و نمایی از جمله اهداف این تحقیق می باشد. میانگین مجذور همبستگی رگرسیون های خطی، نمایی، لگاریتمی و توانی به ترتیب برابر با 5912/0، 5826/0، 5808/0، 5782/0 بدست آمده است. براساس نتایج بدست آمده رگرسیون نمایی بهترین عملکرد را برای تولید نقشه پراکندگی آلودگی داشته است.
    کلید واژگان: بازتابندگی ظاهری سهم هواویز، PM10، رگرسیون غیرخطی، نقشه پراکندگی آلودگی، سنجنده مادیس
    A. Ghorbanian*, A. Mohammadzadeh
    Particulate matters (PM) with an aerodynamic diameter less than 10 microns will cause serious damages to human health. Moreover, their presence can have a critical impact on climate change, global warming, and earth radiance budget. Therefore, obtaining precise information about their concentration and spatial distribution is crucial for public health and environmental studies. High concentration of PM10 can be named as a major environmental and public health problems especially for industrial and populated cities around the world. Thus, policymakers and environmental organizations have decided to establish pollution station to measure various pollutants including PM10. Obviously, it is not possible to establish many pollution stations based on economic justifications so, an only limited number of these instruments are located in every city. However these instruments can measure and record the PM10 concentration with high precision, they only provide sparse point observations. In this case, remote sensing data can be utilized to fill this gap and solve the existing discontinuity problem. Generally, two kinds of remote sensing data which have a good representation of existing pollutant in the atmosphere can be used for this purpose. Aerosol optical depth (AOD) and aerosol contributions to apparent reflectance (ACR) are two of these data. ACR images can be simply calculated from each satellite image consisting of Red and SWIR (2.1 µm) bands. This could be achieved by estimating the surface reflectance (SR) of the Red band from the top of atmosphere reflectance (TOAR) of the SWIR band. Then, the difference of SR and TOAR of the Red band can be a representation of the amount of atmosphere reflectance related to existing pollutants. In this study, we have used ACR images instead of AOD data to estimate PM10 concentrations and produce PM10 pollution maps for Tehran city in Iran based on three reasons. First, they have better spatial resolution and second, they are spatially continuous in contrast to AOD data which include much gaps in the study area due to dark target limitations for AOD value retrieval. Lastly, an aerosol robotic network (AERONET) station is not located in this area which is required to evaluate the precision of retrieved AOD values. MODIS level-1B images named MOD02HKM for 8 days in 2017 with corresponding ground measurements of PM10 concentrations from 14 pollution stations have been utilized in this area. Four different regression model including linear, exponential, logarithmic, and power regressions are employed to estimate PM10 concentrations and produce pollution map. Three criteria of R square, the correlation between estimated and observed (measured) PM10 concentrations, and root mean square error (RMSE) are employed to investigate the performance of four regression models. Based on the R square criterion, the linear regression model with 0.5912 performs better than exponential, logarithmic and power regressions with 0.5826, 0.5808, and 0.5782 R square values respectively. Since we have observed different performance from four regression model based on three evaluation criterion, we have applied a ranking method based on the evaluation criterion to determine the best regression model. Based on the ranking, we recognize that the exponential regression model performs better than linear, logarithmic and power regressions.
    Keywords: ACR, PM10, Non-Linear Regression, Spatial Distribution, MODIS
  • حمید امیری، بیتا آیتی *، حسین گنجی دوست
    صنایع نساجی بدلیل تنوع رنگزاهای مصرفی و روش های تولید، پساب هایی با کمیت و کیفیت شیمیائی متفاوت تولید می کنند. بعضی از این رنگ ها بدلیل داشتن ساختار شیمیایی پیچیده، نیازمند روش های کارا و دارای راندمان تصفیه، نظیر روش های اکسیداسیون پیشرفته هستند. در این تحقیق به منظور افزایش کارائی فرایند فتوکاتالیستی در تصفیه پساب حاوی Reactive Yellow (RY81)، از یک راکتور دیسکی آبشاری تثبیت شده با نانوذرات اکسیدروی استفاده شد.
    در این راکتور به منظور غلبه بر محدودیت های انتقال جرم در راکتورهای با بستر تثبیتی، سطح دیسک ها بوسیله زبری مصنوعی پوشش داده شد، همچنین به دلیل وجود جریان آبشاری، علاوه بر ایجاد اختلاط، هوادهی فاضلاب بصورت خودبخودی انجام می شد. تاثیر پارامترهای غلظت اولیه رنگزا، pH، میزان کاتالیست پوشش داده شده و دبی جریان بر حذف رنگزا مورد بررسی قرار گرفت و میزان بهینه پارامترها، به ترتیب mg/L50، 8، gr/m240 و cc/s80 بدست آمد. نتایج مدلسازی سینتیکی نشان داد که مدل لانگمایر- هینشلوود با میزان k_(L-H) و K_ads، به ترتیب mg L-1 hr-1 17/7 و mg-1 L 122/0 توانایی زیادی در پیش بینی نرخ واکنش دارد. در انتها به منظور پیش بینی ثابت واکنش شبه درجه اول، رابطه رگرسیون غیرخطی پیشنهاد شد که با دقت بالایی (R2=0.95) تحت شرایط بهره برداری مختلف توانایی پیش بینی نرخ واکنش را دارد.
    کلید واژگان: راکتور دیسکی آبشاری، رگرسیون غیرخطی، مدل لانگمایر، هینشلوود، زبری مصنوعی
    Bita Ayati *
    The use of different synthetic dyes in textile industries has increased in recent decay, resulting in the release of dye-containing industrial effluents into natural aquatic ecosystem. Since most of dyes are usually very recalcitrant to microbial degradation, therefore dye removal from effluent is a main concern in many studies. Different process was used for the treatment of dye effluent. In the last few years, studies were focused on advanced oxidation process (AOPs) methods such as UV-ZnO, UV-H2O2, UV-O3 and UV-TiO2. Photocatalytic process such as UV-ZnO is an efficient method that treats non-degradable wastewater by active radicals. The photocatalysis needs a photo-reactor that contacts reactant, products and light. In recent years, different types of photo-reactors have been used for wastewater treatment. In some reactors, nano-photocatalysts are utilized in slurry form, and the other particles are coated on bed. In Photocatalytic reactors with fixed bed, nano-photocatalysts are immobilized on bed and do not need the separation unit, but the main disadvantage of this photo-reactors is the low mass transfer rate between wastewater and nano-photocatalysts. Consequently, Different optimal photo-reactors were developed for increasing mass transfer rate. In this study, a novel photocatalytic cascade disc reactor coated with ZnO nano-photocatalysts was applied and in order to increase mass transfer rate artificial roughness were created on the surface of disks. Applying artificial roughness changes mass transfer rate by providing vertical mixing, creating secondary currents and increasing the Reynolds number. This photo-reactor has a number of advantages that include eliminating the need for catalyst separation units as the catalyst is immobilized, creating the flow mixing by non-mechanical method, increasing the transport of oxygen from the gas phase to the photocatalyst surface by providing the flow cascade pattern. The photo-reactor was used in order to remove Reactive Yellow 81 (RY81) dye from textile industry effluent, by means of UV-ZnO process. RY81 is a reactive dye composed of 10 Benzene rings and two –N=N azo bonds. The effect of different operational parameters such as initial Concentration of dye, pH, Catalyst surface loading and flow rate in removal efficiency was investigated, and the optimal value of those parameters were 50 mg/L, 8, 40 gr/m2 and 80 cc/s, respectively. A rate equation for the removal of RY81 was obtained by mathematical kinetic modeling. The Langmuir-Hinshelwood kinetic model is one of the most common kinetic models that are used for studying the kinetics of heterogeneous photo-catalysis. The results of reaction kinetic modeling indicate the conformity of removal kinetics with Langmuir-Hinshelwood model, and the constants kL-H and Kads were obtained 7.17 mg L-1 hr-1, 0.122 mg-1 L, respectively.
    One way of inserting various operational parameters to a rate equation is regression analysis. Therefore, in this study, nonlinear regression model was developed for prediction pseudo- first order rate constant as a function of initial concentration of dye, pH, catalyst surface loading and flow rate. This equation could properly predict (R2=0.95) the removal rate constant of RY81 removal in the photocatalytic cascade disk reactor under different operational conditions and a good consistency was observed between the calculated results and experimental findings.
    Keywords: Reactive Yellow 81, Non-linear regression, Cascade photocatalytic reactor, Langmuir-Hinshelwood
  • H. Saberinejad*, A. Keshavarz, M. Bastami, M. Payandehdoost

    Although, the Stirling engine (SE) was invented many years ago, the investigation on SE is still interesting due to variety of energy resources can be applied to power it (solar energy, fossil fuel, biomass and geothermal energy). In this paper, the thermodynamic cycle of SE is analyzed by employing a new analytical model and a new method is presented to evaluate output power and efficiency of real engines. Using the correcting functions; represent more accurate results for known Schmidt equations respect to adiabatic model. So without need to employing numerical methods and iterative solver programs, analogous results with accuracy and correctness of open-form solution-adiabatic method is obtained. The modeling of results of two methods is done by Non-linear Multiple Regression and new equations based on Schmidt equations with new correctness factors is presented. The correctness factors are function of structural and operational characteristics of engine.  Moreover, available output data of GPU-3 SE was compared. These comparisons show good agreement, indicating that the model is an appropriate method for modeling of SE outputs.

    Keywords: Stirling engine, analytical solution, non-linear regression, thermodynamic analysis
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال