simulated annealing algorithm
در نشریات گروه فنی و مهندسی-
Journal of Advances in Industrial Engineering, Volume:58 Issue: 1, Winter and Spring 2024, PP 197 -217Developing and optimizing effective inventory systems considering realistic constraints and practical assumptions can help managers remarkably decrease inventory and consequently supply chain costs. In this research, we propose a new variant of the multi-item inventory model taking into account warehouse capacity, on-hand budget constraints, imperfect products in supply deliveries and partial backordering where the products can be converted into perfect products by a local repair shop. To deal with the proposed model, three solution approaches, including interior-point technique, as an exact method, and two metaheuristics based on Simulated Annealing (SA) and Water Cycle Algorithm (WCA), are proposed. Extensive computational experiments are conducted on different sets of instances. Using different measures such as RPD, PRE, and computational time, the performance of the solution approaches is evaluated within different test instances. The results show that the WCA outperforms the two other approaches and leads to the best solutions in the proposed problem.Keywords: Inventory, Imperfect Products, Repair, Partial Backordering, Water Cycle Algorithm, Interior-Point Algorithm, Simulated Annealing Algorithm
-
International Journal of Supply and Operations Management, Volume:11 Issue: 2, Spring 2024, PP 188 -202
Digital marketing has become vital to businesses' marketing strategies in today's technology and social media era. However, the effectiveness of digital marketing campaigns largely depends on accurately identifying the target audience. This study aims to implement the simulated annealing initiative algorithm for digital marketing, as well as audience classification and optimum target audience selection. Traditional methods of target audience identification, such as demographic, geographic, and psychographic segmentation, are only sometimes effective in identifying the most responsive audience. Therefore, advanced techniques such as clustering, genetic, and simulated annealing algorithms have been proposed to identify the optimum target audience. The heuristic simulated annealing algorithm is one of the most promising techniques for optimum target audience identification. It is widely used in combinatorial optimization problems and applied in various fields such as engineering, economics, management, and computer science. In this research, a digital marketing campaign is implemented for a new line to sell training courses in empowerment and competency in human resource management within the mining industry. After conducting market research, we have identified five critical segments: age, gender, income group, place of residence, and level of university education. The number of customers at each customer journey stage was 740 people in brand development, email, and advertising campaigns, of which 620 people are in the "Awareness" stage, 431 people in the "Interest" stage, 261 people in the "Consideration" stage, 203 people in the "Intend" stage, 179 people in the "Purchase" and finally, 179 People were evaluated in the "loyalty" stage for the case of educational service company. The results show we should target 20% of our marketing efforts towards the 18-24 age group, 30% towards females, 20% towards high-income individuals, 10% towards rural areas, and 20% towards University education level in BSc. The best cost per conversion we obtain is 78.105×106 Rials. The results show that the simulated annealing algorithm can be valuable for identifying the optimum target audience in digital marketing campaigns. By considering the entire customer journey and allowing for more complex audience targeting, the algorithm can help companies optimize their marketing strategies and maximize their profits.
Keywords: Target Audience, Digital Marketing, Simulated annealing algorithm -
خوشه بندی داده ها یکی از وظایف اصلی داده کاوی است که وظیفه کاوش الگوهای پنهان در داده های بدون برچسب را بر عهده دارد. به خاطر پیچیدگی مسیله و ضعف روش های خوشه بندی پایه، امروزه اکثر مطالعات به سمت روش های اجماع خوشه بندی هدایت شده است. اگر چه برای بیشتر مجموعه داده ها، الگوریتم های خوشه بندی منفردی وجود دارد که نتایج قابل قبولی به دست می دهند، اما توانایی یک الگوریتم خوشه بندی منفرد محدود است. در واقع هدف اصلی اجماع خوشه بندی جستجوی نتایج بهتر و پایدارتر، با استفاده از ترکیب اطلاعات و نتایج حاصل از چندین خوشه بندی اولیه است. در این مقاله، روشی مبتنی بر اجماع خوشه بندی پیشنهاد خواهد شد که مانند بیشتر روش های انباشت شواهد دارای دو گام است: 1- ساختن ماتریس مشارکت همزمان و 2- تعیین افراز های نهایی از ماتریس مشارکت پیشنهادی. در روش پیشنهادی، برای ساخت ماتریس مشارکت همزمان، علاوه بر هم خوشه بودن نمونه ها از بعضی اطلاعات دیگر هم استفاده خواهد شد. این اطلاعات می توانند مربوط به میزان شباهت نمونه ها، اندازه خوشه های اولیه، میزان پایداری خوشه های اولیه و غیره باشد. در این مقاله مسیله خوشه بندی به صورت یک مسیله بهینه سازی صریح توسط مدل آمیخته گوسی تعریف می شود و که با استفاده از الگوریتم آبکاری فلزات حل می شود. همچنین روشی تکاملی مبتنی بر آبکاری فلزات برای تعیین افراز نهایی از ماتریس مشارکت همزمان پیشنهادی ارایه خواهد شد. مهم ترین بخش روش تکاملی، تعیین تابع هدفی است که تضمین کند افراز نهایی از کیفیت بالایی برخوردار خواهد بود. نتایج تجربی نشان می دهد روش پیشنهادی از نظر معیارهای مختلف ارزیابی کیفیت خوشه بندی از سایر روش های مشابه بهتر می باشد.
کلید واژگان: اجماع خوشه بندی، مدل آمیخته گوسی، الگوریتم آبکاری فلزات، ماتریس مشارکت همزمان، پایداری، تابع هدفData clustering is one of the main tasks of data mining, which is responsible for exploring hidden patterns in unlabeled data. Due to the complexity of the problem and the weakness of the basic clustering methods, today most of the studies are directed towards clustering ensemble methods. Although for most datasets, there are individual clustering algorithms that provide acceptable results, but the ability of a single clustering algorithm is limited. In fact, the main purpose of clustering ensemble is to search for better and more stable results, using the combination of information and results obtained from several initial clustering. In this paper, a clustering ensemble-based method will be proposed, which, like most evidence accumulation methods, has two steps: 1- building a simultaneous participation matrix and 2- determining the final output from the proposed participation matrix. In the proposed method, some other information will be used in addition to the clustering of the samples to construct the simultaneous participation matrix. This information can be related to the degree of similarity of the samples, the size of the initial clusters, the degree of stability of the initial clusters, etc. In this paper, the clustering problem is defined as an explicit optimization problem by the mixed Gaussian model and is solved using the simulated annealing algorithm. Also, an evolutionary method based on simulated annealing will be presented to determine the final output from the proposed simultaneous participation matrix. The most important part of the evolutionary method is to determine the objective function that guarantees the final output will be of high quality. The experimental results show that the proposed method is better than other similar methods in terms of different clustering quality evaluation criteria.
Keywords: Clustering ensemble, Gaussian mixture model, simulated annealing algorithm, simultaneous participation matrix, stability, objective function -
مسایل ممانعت در شبکه، دسته ای از مسایل هستند که دو بازیگر با اهداف متضاد به تقابل با یکدیگر می پردازند و به صورت کلی منفعت یک بازیگر موجب متضرر شدن بازیگر دیگر می شود. در مسیله ممانعت از بیشینه ظرفیت، یک مدافع در نقش رهبر اقدامات ممانعتی خود را با توجه به بودجه موجود بر روی یال های یک شبکه اعمال می کند. در سطح بعدی، تعدادی مهاجم به عنوان پیرو و با مشاهده اقدامات ممانعتی مدافع، مسیله بیشینه سازی ظرفیت مسیر را از مبدا به مقصد بهینه سازی می نمایند. ممانعت در واقع حمله به کمان های شبکه و تخریب آن ها، با هدف کاهش ظرفیت عبوری کمان می باشد. در این پژوهش در ابتدا یک مدل برنامه ریزی ریاضی دو سطحی صفر و یک برای مسیله مورد نظر بیان شده است. سپس با توجه به پیچیدگی حل مسایل دو سطحی، یک الگوریتم ترکیبی شامل الگوریتم دایکسترا اصلاح شده و الگوریتم شبیه سازی تبرید برای حل مسیله پیشنهاد شده است. الگوریتم دایکسترا اصلاح شده همواره جواب بهینه مسیله بیشینه ظرفیت را ارایه می دهد که سبب تولید جواب های مطلوب در الگوریتم ترکیبی می گردد. سپس کارایی الگوریتم پیشنهادی تا ابعاد 100 گره و 150 کمان مورد بررسی قرار گرفت که نشان دهنده توانایی الگوریتم برای حل مسایل در ابعاد مختلف می باشد. بر اساس نتایج حاصل شده، افزایش بودجه مدافع تا میزان مشخصی بر بهبود تابع هدف مسیله تاثیرگذار می باشد. همچنین مقدار ضریب اهمیت مهاجمان در مسیله، ارتباط معکوس با کیفیت مسیر مهاجمان دارد و موجب افزایش یا کاهش بیشینه ظرفیت مسیر مهاجمان می گردد.
کلید واژگان: بازی مجموع صفر، مسئله ممانعت در شبکه، مسئله بیشینه سازی ظرفیت، الگوریتم دایکسترا اصلاح شده، الگوریتم شبیه سازی تبریدNetwork interdiction problems are a group of problems in which two actors face each other with conflicting goals. In these matters, the benefit of one actor damages the other actor. In the case of maximum capacity path interdiction, a defender in the role of leader applies his interdicting actions according to the available budget. At the next level several attackers, as followers observing the defender's interdiction action, optimize the maximum capacity path problem from the origin to the destination. Interdiction is attacking the network arcs to destroy them and reduce the capacity of the arc. In this research, first, a two-level binary mathematical programming model for the problem is described. Then, due to the complexity of solving two-level problems, a hybrid algorithm including a revised Dijkstra algorithm and a simulated annealing algorithm is proposed to solve the problem. The revised Dijkstra algorithm always finds an optimal solution to the maximum capacity problem. Therefore, the hybrid algorithm can find good solutions in the search space. Then, the efficiency of the proposed algorithm was evaluated up to the size of 100 nodes and 150 arcs, which shows the ability of the algorithm to solve problems in different sizes. Based on the conclusions, increasing the defender budget results in the objective function being improved to a certain extent. The coefficient of attackers in the objective function is inversely related to the quality of the attackers' path and increases or decreases the maximum capacity of the attackers' path.
Keywords: Zero-Sum game, Network interdiction, Maximum capacity path problem, Revised Dijkstra', s algorithm, Simulated annealing algorithm -
با توجه به اینکه کاهش تاخیر در دریافت اطلاعات در شبکه های بی سیم گسسته در شرایط بحرانی حایز اهمیت است، جهت سرعت بخشیدن به انتقال پیام ها در شبکه های اقتضایی گسسته، پروتکل مسیریابی ترکیبی با رویکرد ذخیره و حمل به جلو در معماری شبکه مبتنی بر جعبه پرتاب با توجه به جنبه هایی مانند پیش بینی رله مناسب و مدیریت موثر بافر در این مقاله ارایه شده است. به منظور حفظ حداکثر نرخ انتقال موفق و کاهش زمان انتقال اطلاعات در معیارهای انتخاب گره رله علاوه بر در نظر گرفتن سوابق گره ها، تاثیر سه عامل مختلف تاخیر مبدا به مقصد، فضای بافر در دسترس گره ها و همچنین اطلاعاتی مانند متوسط سرعت و جهت حرکت گره ها در نظر گرفته شده است. همچنین با به کار بردن الگوریتم شبیه سازی تبرید از هوش مصنوعی در انجام مسیریابی بهینه استفاده می شود. جهت مطالعه عملکرد مدل ارایه شده معیارهای عملکرد مشترک مهمی مانند متوسط تاخیر، نسبت تحویل، تعداد پیام های از دست رفته و سربار شبکه مورد استفاده قرار گرفته است. نتایج نشان می دهد که روش مسیریابی پیشنهادی نسبت به سایر روش های مسیریابی علاوه بر حفظ حداکثر انتقال از تاخیر دریافت کمتری برخوردار است.کلید واژگان: تاخیر تحویل، شبکه اقتضایی متحرک، شبکه تحمل پذیر اختلال یا تاخیر، شبکه های مبتنی بر جعبه پرتاب، الگوریتم شبیه سازی تبرید، مسیریابی ترکیبیGiven the importance of reducing data latency in discrete wireless networks in critical situations, we present the combined routing protocol with a storage and forwarding approach in Throw-Box-based network topology concerning aspects such as proper relay prediction and effective buffer management. To reduce the data transfer time in the relay node selection criteria, we consider the effect of different factors: node records, end-to-end latency, the nodes' available buffer space, and information such as average speed and node movement direction. We also use artificial intelligence to perform optimal routing using the Simulated Annealing algorithm. Important common performance criteria such as average latency, delivery ratio, number of lost messages, and network overhead were used to evaluate the performance of the proposed model. The results showed that our proposed routing method has less reception delay than other routing methods and maintains maximum transmission.Keywords: Delay-Tolerant Network, Delivery delay, hybrid routing, Mobile Ad hoc Network, Simulated Annealing Algorithm, Throw-Box-based network
-
International Journal of Optimization in Civil Engineering, Volume:12 Issue: 2, Spring 2022, PP 234 -243
The cycle basis of a graph arises in a wide range of engineering problems and has a variety of applications. Minimal and optimal cycle bases reduce the time and memory required for most of such applications. One of the important applications of cycle basis in civil engineering is its use in the force method to frame analysis to generate sparse flexibility matrices, which is needed for optimal analysis. In this paper, the simulated annealing algorithm has been employed to form suboptimal cycle basis. The simulated annealing algorithm works by using local search generating neighbor solution, and also escapes local optima by accepting worse solutions. The results show that this algorithm can be used to generate suboptimal and subminimal cycle bases. Compared to the existing heuristic algorithms, it provides better results. One of the advantages of this algorithm is its simplicity and its ease for implementation.
Keywords: suboptimal cycle basis, simulated annealing algorithm, graph theory, metaheuristic algorithms, sparse matrices -
Journal of Optimization in Industrial Engineering, Volume:14 Issue: 31, Summer and Autumn 2021, PP 111 -128Nowadays, the citrus supply chain has been motivated by both industrial practitioners and researchers due to several real-world applications. This study considers a four-echelon citrus supply chain, consisting of gardeners, distribution centers, citrus storage, and fruit market. A Mixed Integer Non-Linear Programming (MINLP) model is formulated, which seeks to minimize the total cost and maximize the profit of the Citrus supply chain network. Due to the complexity of the model when considering large-scale samples, two well-known meta-heuristic algorithms such as Ant Colony Optimization (ACO) and Simulated Annealing (SA) algorithms have been utilized. Additionally, a new multi-objective ACO algorithm based on a set of non-dominated solutions form the Pareto frontier developed to solve the mathematical model. An extensive comparison based on different measurements analyzed to find a performance solution for the developed problem in the three sizes (small, medium, and large-scale). Finally, the various outcomes of numerical experiments indicate that the MOACO algorithm is more reliable than other algorithms.Keywords: citrus supply chain, MINLP model, Simulated Annealing Algorithm, ant colony optimization algorithm
-
International Journal of Supply and Operations Management, Volume:8 Issue: 2, Spring 2021, PP 96 -113In this paper, an integer linear programming formulation is developed for a novel fuzzy multi-period multi-depot vehicle routing problem. The novelty belongs to both the model and the solution methodology. In the proposed model, vehicles are not forced to return to their starting depots. The fuzzy problem is transformed into a mixed-integer programming problem by applying credibility measure whose optimal solution is an (α,β)-credibility optimal solution to the fuzzy problem. To solve the problem, a hybrid genetic-simulated annealing-auction algorithm (HGSA), empowered by a modern simulated annealing cooling schedule function, is developed. Finally, the efficiency of the algorithm is illustrated by employing a variety of test problems and benchmark examples. The obtained results showed that the algorithm provides satisfactory results in terms of different performance criteria.Keywords: Periodic routing problem, Multi-Depot, Hybrid algorithm, auction algorithm, Genetic Algorithm, Simulated annealing algorithm
-
Journal of Electrical and Computer Engineering Innovations, Volume:8 Issue: 2, Summer-Autumn 2020, PP 219 -232Background
Prediction of students' academic performance is essential for systems emphasizing students' greater success. The results can largely lead to increase in the quality of the educating and learning. Through the application of data mining, useful and innovative patterns can be extracted from the educational data.
MethodsIn this paper, a new metaheuristic algorithm, combination of simulated annealing and genetic algorithms, is proposed for predicting students’ academic performance in educational data mining. Although metaheuristic algorithms are one of the best options for discovering the hidden relationships between data in data science, they do not separately perform well in accurate prediction of students’ academic performance. Therefore, the proposed method integrates the advantages of both genetic and simulated annealing algorithms. The genetic algorithm is applied to explore new solutions, while simulated annealing is used to increase the exploitation power. By using this combination, the proposed algorithm has been able to predict the students’ academic performance with high accuracy.
ResultsThe efficiency of the proposed algorithm is evaluated on five different educational data sets, including two data sets of students of Shahid Rajaee University of Tehran and three online educational data sets. Our experimental results show and accuracy improvement of the proposed algorithm in comparison to the four similar metaheuristic and five popular classification methods respectively. The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.
Keywords: Classification, Educational data mining, Simulated annealing algorithm, Genetic Algorithm, Educational Performance prediction -
As a real time process, in tuning the coefficients of PID controllers in AVRs, accuracy vs. speed is an important issue. Considering complexity of the problem and real systems requirements, various methods, including exact methods and approximation algorithms, have been implemented for this purpose. Since the conventional methods based on meta-heuristic algorithms solving this problem, generally use population-based algorithms such as GA and PSO, this paper aims to investigate the efficiency and performanceof single-solution based metaheuristics to solve this problem. So Simulated Annealing (SA) algorithm is proposed, and implemented for optimizing PID coefficients. In addition, an extension of SA is presented improving the search strategy based on neighborhood adjustment. The results indicate that the proposed algorithms as single based metaheuristics, have a good or even better performance vs. population based metaheuristics, in spite of simplicity in implementation and less computation requirements. Thisfact implies that the landscape complexity of these problems does notnecessarily require population-based algorithms. The presented method is also applied to multipleobjective functions regarding different time response criteria in output voltage and leads to better results in less time.
Keywords: AVR System, PID Controller, Population based, Single-solution based Metaheuristics Algorithms, Simulated Annealing Algorithm -
International Journal of Research in Industrial Engineering, Volume:9 Issue: 4, Autumn 2020, PP 318 -327In this research, we present a mathematical model for allocating people to different jobs and shifting employees between related jobs. This action will reduce the repetitive activities workload and ergonomic risks at the planned time horizon, and finally increases the organization's efficiency. In this proposed model, the devices are semi-automatic and it is possible to allocated more than one task to one person. Regarding the modeling and the case study of the constraints, it is shown that the complexity of this problem type is NP-Hard, and the result of accurate methods for solving the problem is not possible in a reasonable time. Due to this Simulated Annealing (SA) algorithm is used to study the proposed model and comparison of the results of SA algorithm with the results of precise optimization methods shows the better performance of the Simulated Annealing algorithm in terms of the time and answer quality.Keywords: Job Rotation, Mathematical Modeling, physical injuries, Simulated Annealing Algorithm
-
A bi-objective mathematical model is developed to simultaneously consider the quay crane and yard truck scheduling problems at container terminals. Main real-world assumptions, such as quay cranes with non-crossing constraints, quay cranes’ safety margins and precedence constraints are considered in this model. This integrated approach leads to better efficiency and productivity at container terminals. Based on numerical experiments, the proposed mathematical model is effective for solving small-sized instances. Two versions of the simulated annealing algorithm are developed to heuristically solve the large-sized instances. Considering the allocation of trucks as a grouping problem, a grouping version of the simulated annealing algorithm is proposed. Effectiveness of the presented algorithms is compared to the optimal results of the mathematical model on small-sized problems. Moreover, the performances of the proposed algorithms on large-sized instances are compared with each other and the numerical results revealed that the grouping version of simulated annealing algorithm outperformed simulated annealing algorithm. Based on numerical investigations, there is a trade-off between the tasks’ completion time and the cost of utilizing more trucks. Moreover increasing the number of YTs leads to better outcomes than increasing the number of QCs. Besides two-cycle strategy and using dynamic assignment of yard truck to quay cranes leads to faster loading and unloading procedure.Keywords: quay crane scheduling, yard truck scheduling, non-crossing, Simulated Annealing Algorithm, Grouping, safety margin, Container Terminals
-
یکی از مهم ترین مسائل نگران کننده جوامع بشری در سال های اخیر مدیریت پسماند شهری بوده که از جمله ملزومات اصلی هر شهر می باشد و بی توجهی نسبت به آن می تواند برای هر شهر و حتی ساکنان روستاهای اطراف آن مشکل آفرین باشد. مناطق شهری بیشترین مقدار زباله را تولید کرده و در نتیجه به یک سیستم کارا جهت جمع آوری زباله و دفع آن نیازمند است که تعیین و تثبیت آن بسیار مشکل و هزینه بر است. در این راستا، این مقاله به بررسی مساله مسیریابی وسایل نقلیه با در نظر گرفتن سفرهای چندگانه و پنجره های زمانی مختص به جمع آوری زباله شهری با هدف کمینه سازی هزینه کل شامل هزینه های مسیریابی، هزینه های جریمه خروج از پنجره های زمانی سرویس و هزینه های بکارگیری وسایل نقلیه می پردازد. برای حل مساله در ابعاد کاربردی، الگوریتم بهینه سازی گرگ خاکستری (GWO) توسعه می یابد و عملکرد آن در مقابل حل کننده CPLEX نرم افزار GAMS و الگوریتم شبیه سازی تبرید (SA) مورد ارزیابی قرار می گیرد. نتایج بدست آمده بیانگر آن است که الگوریتم GWO پیشنهادی دارای عملکرد قابل قبولی در تولید جواب های با کیفیت می باشد. در نهایت، برای مطالعه رفتار تابع هدف در مقابل تغییرات پارامتر تقاضا در دنیای واقعی، آنالیز حساسیت بر روی این پارامتر انجام شده و سیاست بهینه مدیریتی تحلیل می شود.
کلید واژگان: مساله مسیریابی وسایل نقلیه سفرهای چندگانه، جمع آوری زباله شهری، الگوریتم بهینه سازی گرگ خاکستری، الگوریتم شبیه سازی تبریدOne of the most important issues of concern to human societies in recent years is urban waste management that is one of the main requirements of each city, and without any notice of it, it can be problematic for it and even residents of the surrounding villages. Urban areas generate the highest amount of waste and consequently, they need an efficient system for collecting and disposing of waste where its determination and stabilization is very difficult and costly. In this regard, this paper examines the multi-trip vehicle routing problem with time windows specific to the urban waste collection, with the goal is to minimize the total cost including routing costs, the earliness and lateness penalty cost for violating the service time windows and the usage costs of vehicles. To solve the problem in practical dimensions, grey wolf optimization (GWO) algorithm is developed where its performance is tested compared to CPLEX solver of GAMS and simulated annealing (SA) algorithm. The obtained results demonstrate that the proposed GWO have an acceptable performance to generate high-quality solutions. Finally, to study the behavior of the objective function versus the real-world demand parameter changes, a sensitivity analysis is performed on this parameter and the optimal management policy is analyzed.ed.
Keywords: Multi-trip vehicle routing problem, Urban waste collection, Grey wolf optimization algorithm, Simulated annealing algorithm -
Due to many damages that human activities have imposed on the environment, authorities, manufacturers, and industry owners have taken into account the development of supply chain more than ever. One of the most influential and essential human activities in the supply chain are transportation which green vehicles such as electric vehicles (EVs) are expected to generate higher economic and environmental impact. To this end, designing efficient routing scheme for the fleet of EVs is significant. A remarkable issue about EVs is their need to stations for charging their battery. Due to the existence of time limitations, more attention should be paid to time spent at the charging station, so considering the queuing system at charging stations makes more precise time calculations. Furthermore, multi-graphs are more consistent with the characteristics of the transportation network. Hence, we consider alternative paths including two criterion cost and energy consumption in the network. First, we develop a mixed integer linear programming for the electric vehicle routing problem on a multi-graph with the queue in charging stations to minimize the traveling and charging costs. Since the proposed problem is NP-hard in a strong sense, we provide a simulated annealing algorithm to search the solution space efficiently and explore a large neighborhood within short computational time. The efficiency of the model is investigated with numerical and illustrative examples. Then the sensitivity analysis is performed on the proposed model to indicate the importance of the queuing system and the impact of battery capacity on the penetration of EVs.Keywords: Electric vehicle routing, charging station, queuing system, multigraph, alternative paths, simulated annealing algorithm
-
در این تحقیق مسئله یکپارچه زمانبندی کارها و نیروی انسانی در محیط جریان کارگاهی مورد بررسی قرار گرفته است که در آن تعدادی نیروی انسانی با مهارت های مختلف وجود دارند که قابلیت انجام کارهای متفاوت با سرعت های مختلف را دارند. هدف مسئله تعیین زمانبندی کارها در مراحل مختلف و تخصیص نیروی انسانی به این مراحل است به گونه ای که بیشنه زمان تکمیل کارها (Cmax) کمینه شود. برای این منظور یک مدل ریاضی خطی عدد صحیح مختلط ارائه شده است که این مدل در نرم افزار CPLEX اجرا شده است که می تواند مسائل با ابعاد کوچک را در مدت زمان معقول حل شده است؛ اما به دلیل NP-hard بودن مسئله، این نرم افزار قادر به تولید جواب های بهینه برای مسائل با ابعاد بزرگ نمی باشد. برای این منظور، دو روش فراابتکاری مبتنی بر الگوریتم بهینه سازی ازدحام ذرات ارائه شده است؛ چون احتمال قرار گرفتن الگوریتم بهینه سازی ازدحام ذرات (PSO) در بهینه محلی زیاد است، عملکرد این الگوریتم با استفاده از الگوریتم تبرید شبیه سازی شده (SA) بهبود داده شده است (IPSO). نتایج نشان می دهد که الگوریتم IPSO عملکرد بهتری نسبت به الگوریتم PSO در تمامی ابعاد دارد و با بزرگ تر شدن ابعاد مسئله برتری الگوریتم IPSO محسوس تر می باشد.
کلید واژگان: جریان کارگاهی، زمان بندی نیروی انسانی مدل ریاضی خطی عدد صحیح، الگوریتم بهینه سازی ازدحام ذرات، الگوریتم شبیه سازی تبریدThis research addresses a simultaneous jobs scheduling and worker assignment problem in flow shop environment in which there are some workers with different skills who can operate the jobs with different speed. The primary aim of the research is to schedule the jobs and assign the worker so that maximum completion time (Cmax) is minimized. To tackle this problem, a mixed integer linear programming model is introduced and is coded in CPLEX software so that it can obtain the optimal solutions in reasonable time. Due to NP-hardness of the research problem, CPLEX cannot achieve the optimal solutions for large-scale problems. Thus, two metaheuristic approaches based on particle swarm optimization (PSO) is proposed here. In order to trapping the PSO algorithm in local optima with high probability, the performance of the PSO algorithm is improved by simulated annealing (SA) algorithm (IPSO). The experimental results show that the IPSO algorithm can generate better results in entire scales and the superiority of the IPSO is significant in the large scale.
Keywords: Flow shop, worker scheduling, mixed integer linear programming, particle swarm optimization algorithm, Simulated annealing algorithm -
Journal of Applied Research in Water and Wastewater, Volume:5 Issue: 1, Winter and Spring 2018, PP 381 -388Manning roughness coefficient is one of the most important parameters in designing water conveyance structures. Unsuitable selection of this coefficient brings up some mistakes. This research aims to present a method to determine the Manning roughness coefficient based on a combination of optimization algorithm of simulated annealing (SA) with gradually varied flow equations. Therefore, in a lab rectangular flume of 12 m, 60 cm and 65 cm in length, width and height with fixed channel bed slope of 0.0002, nine series of water level profiles were carried out. Then, an objective function based on observed and calculated water level gradient was defined to decide on manning roughness coefficient while it was minimized with simulated annealing optimization method. The values of objective function parameters were discussed by sensitivity analysis and the most optimal objective function was obtained. To measure the accuracy of coefficient obtained, Statistics indices of R2, Root mean square error (RMSE), Mean bias error (MBE), d were used. The results showed that manning roughness coefficient has a great accuracy.Keywords: Manning roughness, Simulated annealing algorithm, Gradually varied flow, Nonlinear optimization
-
در این مقاله، یک مدل ریاضی برای موازنه ی انرژی و تولید توان در یک نیروگاه دودکش خورشیدی توسعه داده شده است. با استفاده از این مدل، میزان توان تولیدی یک نیروگاه دودکش خورشیدی، بررسی شده است. ابتدا معادلات حاکم بر نیروگاه نوشته شده، سپس مجموعه معادلات و روابط کمکی مرتبط، با استفاده از الگوریتمهای تبرید شبیه سازی شده و بهینه سازی ازدحام ذرات حل می گردد. برای بررسی صحت و دقت مدل از داده های موجود در مقاله ی مرجع استفاده شده است. نتایج این مطالعه نشان می دهد، مقدار راندمان حرارتی در نیروگاه دودکش خورشیدی، عددی کوچک و نسبت توان تولیدی به کل انرژی ورودی برای داده های مرجع تقریبا برابر 6/0 درصد می باشد. بیشترین انتقال حرارت در نیروگاه بین دو سطح زمین و سقف آن رخ می دهد. با تغییر در ابعاد هندسی نیروگاه، توان تغییرات قابل توجهی دارد. با توجه به موازنه ی انرژی، افزایش حرارت ورودی باعث بالا رفتن دمای سطوح نیروگاه می گردد، که این امر اتلاف انرژی را در پی دارد. در روش حل با استفاده از الگوریتمهای بهینه سازی، با افزایش تعداد تکرار در الگوریتم، دقت نتایج نیز بهبود می یابد.کلید واژگان: نیروگاه دودکش خورشیدی، مدل سازی ریاضی، موازنه ی انرژی، الگوریتم تبرید شبیه سازی شده، الگوریتم بهینه سازی ازدحام ذراتIn this paper, a mathematical model for balancing energy and power generation in a solar chimney power plant has been developed. Using this mathematical model, the amount of power produced by a solar chimney power plant, have been investigated. The governing equations written power plants, Then Equations, using simulated annealing algorithm and particle swarm optimization were solved. To validate the model, the data contained in the reference paper is used. The results of this study show, The thermal efficiency of the solar chimney power plant, a small number. Proportion Power produced to the total energy for the reference data, approximately 0.6 percent. Most heat transfer occurs between the ground and the roof of the plant. By changing the geometry of power plant, Power, significant changes. According to energy balance, heat input is more increased temperature surfaces, As a result, waste of energy. In this method, using optimization algorithms, Speed solution Increases. And by increasing the number of Iteration the algorithm, Accuracy of the results will improve.Keywords: Solar chimney power plant, Mathematical modeling, Energy balance, Simulated annealing algorithm, particle swarm optimization algorithm
-
در سال های اخیر، استفاده از روشی هوشمند برای تشخیص خودکار مراحل خواب در کاربردهای پزشکی، برای کاهش حجم کار پزشکان در تجزیه و تحلیل داده های خواب از طریق بازرسی بصری، یکی از چالش های مهم به حساب می آید. در این مقاله، الگوریتمی مبتنی بر EEG تک کاناله برای شناسایی خودکار مراحل خواب، با استفاده از تبدیل موجک گسسته و مدل ترکیبی الگوریتم تبرید و شبکه ی عصبی ارایه می شود. سیگنال با استفاده از تبدیل موجک گسسته به 7 سطح تجزیه شده و ویژگی های آماری از هر یک از سطوح تجزیه شده، استخراج می گردد. جهت بهینه سازی و کاهش ابعاد بردارهای ویژگی، از یک مدل ترکیبی الگوریتم تبرید و شبکه ی عصبی چندلایه ی پس انتشار خطا استفاده شده، و سپس از آزمون ANOVA برای تایید صحت ویژگی های بهینه استفاده می شود. طبقه بندی نهایی روی این ویژگی های بهینه شده توسط یک شبکه ی عصبی پرسپترون با یک لایه ی پنهان انجام می شود، که به طور میانگین برای طبقه بندی 2-کلاس تا 6-کلاس مراحل مختلف خواب دقت بالای 90% را فراهم کرده و نشان می دهد که روش پیشنهادی درصد موفقیت بالاتری در طبقه بندی مراحل خواب نسبت به پژوهش های پیشین دارد.کلید واژگان: تبدیل موجک گسسته، شناسایی خودکار مراحل خواب، الگوریتم تبرید، شبکه ی عصبیUsing an intelligent method to automatically detect sleep patterns in medical applications is one of the most important challenges in recent years to reduce the workload of physicians in analyzing sleep data through visual inspection. In this paper, a single-channel EEG-based algorithm is used to automatically identify sleep stages using discrete wavelet transform and a hybrid model of simulated annealing and neural network. The signal is decomposed using a discrete wavelet transform into seven levels and statistical properties of each level is calculated. To optimize and reduce the dimensions of feature vectors, hybrid model of simulated annealing algorithm and multi-layered neural network are used. Then ANOVA test is applied to validate the selected features. Finally the classification is performed on the validated features by a perceptron neural network with a hidden layer, which provides an average of 90% classification ccuracy for 2 to 6-class classification of different steps of sleep EEG. Suggesting that the proposed method has higher degree of success in classifying sleep stages compared to the existing methods.Keywords: Discrete wavelet transform, Automatic Sleep Stage Detection, Simulated Annealing Algorithm, Neural network
-
International Journal of Research in Industrial Engineering, Volume:6 Issue: 4, Autumn 2017, PP 269 -282
In this paper, a new multi-objective time-cost constrained resource availability cost problem is proposed. The mathematical model is aimed to minimize resource availability cost by considering net present value of resource prices in order to evaluate the economic aspects of project to maximize the quality of project's resources to satisfy the expectations of stakeholders and to minimize the variation of resource usage during project. Since the problem is NP-hard, to deal with the problem a simulated annealing approach is applied, also to validate our results GAMS software is used in small size test problems. Due to the dependency of SA algorithm to its initial parameters a taghuchi method is used to find the best possible SA parameters combinations to reach near optimum solutions in large size problems.
Keywords: Constrained project scheduling, resource availability cost problem, Simulated Annealing Algorithm, Metaheuristic Algorithms -
International Journal of Supply and Operations Management, Volume:4 Issue: 3, Summer 2017, PP 248 -262
This paper presents a new robust mathematical model for the multi-product capacitated single allocation hub location problem with maximum covering radius. The objective function of the proposed model minimizes the cost of establishing hubs, the expected cost of preparing hubs for handling products, shipping and transportation in all scenarios, and the cost variations over different scenarios. In the proposed model, a single product of a single node cannot be allocated to more than one hub, but different products of one node can be allocated to different hubs. Also, a product can be allocated to a hub only if equipment related to that product is installed on that hub. Considering the NP-Hard complexity of this problem, a GA-based meta-heuristic algorithm is developed to solve the large scale variants of the problem. To evaluate the performance of the proposed algorithm, its results are compared with the results of exact method and simulated annealing algorithm. These results show the good performance of the proposed algorithm.
Keywords: Multi-product, Hub location, Single allocation, Robust optimization, Genetic algorithm, Simulated annealing algorithm
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.