به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

chaotic self-adaptive particle swarm optimization algorithm

در نشریات گروه برق
تکرار جستجوی کلیدواژه chaotic self-adaptive particle swarm optimization algorithm در نشریات گروه فنی و مهندسی
تکرار جستجوی کلیدواژه chaotic self-adaptive particle swarm optimization algorithm در مقالات مجلات علمی
  • جواد حمیدزاده*، منا مرادی

    سیستم های توصیه گر زیرمجموعه ای از سیستم های هوشمند پالایش اطلاعات هستند که در فضای اینترنت علایق کاربر را شناسایی نموده و توصیه های مرتبط با سلیقه ی کاربر را ارائه می دهند. پالایش مشارکتی مبتنی بر کاربر، از مهم ترین انواع سیستم های توصیه گر است. از مهم ترین چالش ها در این سیستم ها پراکندگی و حجم زیاد داده ها است که بر کارایی آن ها اثرگذار است. در روش پیشنهادی، برای اولین بار از الگوریتم خوشه بندی فازی C-میانگین مرتب شده و الگوریتم تکاملی ازدحام ذرات تطبیقی آشوبی برای خوشه بندی کاربران استفاده شده است. هدف روش پیشنهادی بهبود میزان خطای پیش بینی در مجموعه داده های حجیم با پراکندگی زیاد و کاهش تاثیر داده های پرت و نویز است. به منظور ارزیابی و اثبات کارایی روش پیشنهادی، آزمایش هایی روی پایگاه داده های واقعی اجرا شده است. نتایج آزمایش ها نشان دهنده ی برتری روش پیشنهادی نسبت به روش های مرز دانش بر اساس معیارهای میانگین خطای مطلق، جذر میانگین مربعات خطا، نرخ صحت و زمان محاسباتی است.

    کلید واژگان: سیستم توصیه گر، پالایش مشارکتی، خوشه بندی فازی، الگوریتم تکاملی، الگوریتم ازدحام ذرات تطبیقی آشوبی
    Javad Hamidzadeh*, Mona Moradi

    Recommender systems are a subset of intelligent information filtering systems that discovers user interests and provide user-friendly recommendations. User-based collaborative filtering recommender systems is one of the most important types of recommender systems. However, they are faced with voluminous data and sparsity problems that have negative effects on the performance of the systems. In the proposed method, fuzzy C-ordered means clustering algorithm is integrated with a chaotic self-adaptive particle swarm evolutionary algorithm for clustering users. The proposed method aims to improve the rating prediction in large sparse datasets and reduce the negative impact of outliers and noisy data. Experiments have been conducted on real-world datasets to evaluate and prove the efficiency of the proposed method. Experimental results show the superiority of the proposed method that the state-of-the-art methods based on prediction error criteria, accuracy rates, and the computational time.

    Keywords: Recommender Systems, Collaborative Filtering, Fuzzy Clustering, Evolutionary Algorithm, Chaotic Self-Adaptive Particle Swarm Optimization Algorithm
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال