convolutional neural network
در نشریات گروه برق-
در این مقاله یک سیستم تشخیص خودکار موارد مبتلا به کوید-19 مبتنی بر اینترنت اشیا پیشنهاد می شود. در مدل پیشنهادی ابتدا با استفاده از فن آوری اینترنت اشیا تصاویر پزشکی مستقیم پس از مراجعه فرد مشکوک از طریق تجهیزات پزشکی مجهز به اینترنت اشیا به مخزن داده ارسال می شود. سپس به منظور کمک به متخصصین رادیولوژی برای تفسیر هرچه بهتر تصاویر پزشکی از چهار مدل شبکه عصبی پیچشی از پیش آموزش دیده به نام های InceptionResNetV2، InceptionV3، VGG19 و ResNet152 و دو مجموعه داده تصاویر پزشکی رایولوژی قفسه سینه و CT Scan در یک طبقه بندی سه کلاسه برای پیش بینی دقیق موارد مبتلا به کوید-19، افراد سالم و موارد مبتلا بیماری استفاده می شود. درنهایت بهترین نتیجه به دست آمده برای تصاویر CT Scan متعلق به معماری InceptionResNetV2 با دقت 99.366% و برای تصاویر رادیولوژی مربوط به معماری InceptionV3 با دقت 96.943% می باشد. نتایج نشان می دهد این سیستم منجر به کاهش مراجعه روزانه به مراکز درمانی و در نتیجه کاهش فشار بر سیستم مراقبت های درمانی می شود. همچنین به متخصصین رایولوژی و کادر درمان کمک می کند تا هرچه سریعتر بیماری شناسایی شود.
کلید واژگان: پردازش تصویر، هوش مصنوعی، اینترنت اشیا، شبکه عصبی پیچشی، یادگیری عمیقIn this paper, we propose an automatic detection system for COVID-19 cases based on the Internet of Things. In the proposed model, first, using Internet of Things technology, medical images are sent directly to the data collection after the suspicious person's visit through medical equipment equipped with Internet of Things, and then, in order to help radiologists to interpret medical images better, usage has been made of four pre-trained convolutional neural network models i.e. InceptionV3, InceptionResNetV2, VGG19 and ResNet152 as well as two datasets of chest radiology medical images and CT Scan in a 3-class classification for accurate prediction of cases suffering from COVID-19, healthy people, and diseased cases. Finally, the best result for CT-Scan images is related to InceptionResNetV2 architecture with an accuracy of 99.366%, and for radiology images related to the InceptionV3 architecture, it is 96.943%. The results show that this system leads to a reduction in daily visits to medical centers and thus reduces the pressure on the medical care system. It also helps rheology specialists to identify the disease as quickly as possible.
Keywords: Image Processing, Artificial Intelligence, Internet Of Things, Convolutional Neural Network, Deep Learning -
Accurate prediction of stock market trends is crucial for informed investment decisions and effective portfolio management, ultimately leading to enhanced wealth creation and risk mitigation. This study proposes a novel approach for predicting stock prices in the stock market by integrating Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks, using sentiment analysis of social network data and candlestick data (price). The proposed methodology consists of two primary components: sentiment analysis of social networks and candlestick data. By amalgamating candlestick data with insights gleaned from Twitter, this approach facilitates a more detailed and accurate examination of market trends and patterns, ultimately leading to more effective stock price predictions. Additionally, a Random Forest algorithm is used to classify tweets as either positive or negative, allowing for a more subtle and informed assessment of market sentiment. This study uses CNN and LSTM networks to predict stock prices. The CNN extracts short-term features, while the LSTM models long-term dependencies. The integration of both networks enables a more comprehensive analysis of market trends and patterns, leading to more accurate stock price predictions.
Keywords: Stock Price Prediction, Deep Learning, Sentiment Analysis, Long Short-Term Memory, Convolutional Neural Network -
Scientia Iranica, Volume:31 Issue: 21, Nov-Dec 2024, PP 1939 -1947Plant diseases are a signi cant concern in agriculture, contributing to as much as 16% of global agricultural losses. This poses serious threats to food security, especially for crops like bananas, which are highly vulnerable to diseases such as Xanthomonas Wilt and Sigatoka leaf spot. These diseases have the potential to cause complete yield losses, reaching up to 100%. Addressing these challenges is crucial, and this study aims to do so by developing a robust disease detection model. Leveraging Convolutional Neural Network (CNN) algorithms, we have created a sophisticated system capable of accurately identifying and categorizing diseases in banana plants. To train our model e ectively, we have gathered a meticulously curated dataset of banana plant leaf images from regions heavily a ected by these diseases. This dataset has been carefully categorized into three groups: Healthy, Xanthomonas Wilt infected, and Sigatoka leaf spot infected. Employing advanced techniques such as data augmentation and transfer learning, we have netuned our model using various architectures including MobileNet, EcientNet, VGG16, VGG19, and InceptionV3. Our research ndings highlight the exceptional performance of the VGG16 model, achieving an impressive classi cation accuracy of 81.53% during rigoroustesting with independent datasets. Looking to the future, we recognize the need for further improvements in model performance. This includes acquiring a more diverse and expansive dataset and implementing automatic hyperparameter selection methods.Keywords: Convolutional Neural Network, Deep Learning, Plant Disease Detection, Xanthomonas Wilt, Sigatoka Leaf Spot, SDG
-
Predicting pedestrians' intentions to cross paths with cars, particularly at intersections and crosswalks, is critical for autonomous systems. While recent studies have showcased the effectiveness of deep learning models based on computer vision in this domain, current models often lack the requisite confidence for integration into autonomous systems, leaving several unresolved issues. One of the fundamental challenges in autonomous systems is accurately predicting whether pedestrians intend to cross the path of a self-driving car. Our proposed model addresses this challenge by employing convolutional neural networks to predict pedestrian crossing intentions based on non-visual input data, including body pose, car velocity, and pedestrian bounding box, across sequential video frames. By logically arranging non-visual features in a 2D matrix format and utilizing an RGB semantic map to aid in comprehending and distinguishing fused features, our model achieves improved accuracy in pedestrian crossing intention prediction compared to previous approaches. Evaluation against the criteria of the JAAD database for pedestrian crossing intention prediction demonstrates significant enhancements over prior studies.Keywords: Pedestrian Crossing Intention Detection, Self-Driving Cars, Body Pose Keypoints, Convolutional Neural Network, Semantic Map
-
Nowadays, medical intelligence detection systems have evolved significantly due to advancements in artificial intelligence, however, they face some challenges. Breast cancer diagnosis and classification is one of the medical intelligence systems. There are a variety of screening techniques available to detect breast cancer such as mammography, magnetic resonance imaging, and ultrasound. This research uses the MIAS mammography image dataset and tries to diagnose and classify benign and malignant masses based on image processing and machine learning techniques. Initially, we apply pre-processing for noise reduction and image enhancement using Quantum Inverse MFT, and then image segmentation with the Social Spider Algorithm. The type of mass is then diagnosed by the Convolutional neural network. The results show that the proposed approach has better performance in comparison to others based on some evaluation criteria such as accuracy of 99.57%, sensitivity of 91%, and specificity of 86%.
Keywords: Breast Cancer, Diagnosis, Classification, Quantum Inverse MFT Algorithm, Social Spider Algorithm, Convolutional Neural Network -
شناسایی و ارزیابی لکوسیت ها برای ارزیابی کیفیت سیستم ایمنی انسان مهم است. با این حال، تجزیه و تحلیل اسمیر خون به تخصص پاتولوژیست بستگی دارد. روش دستی برای تجزیه و تحلیل و طبقه بندی گلوبولهای سفید ها پرهزینه و زمان بر است و می تواند منجر به خطا در تشخیص شود. اکثر روش های یادگیری عمیق از مدل های مبتنی بر CNN برای طبقه بندی گلبول های سفید استفاده می کنند. این مقاله استفاده از یک شبکه مبتنی بر ViT را برای طبقه بندی لکوسیت ها در نمونه خون مورد بحث قرار می دهد. مجموعه داده مورد استفاده در این مقاله شامل 352 تصویر با اندازه 320 در 240 است که از طریق روش هایی برای ایجاد یک مجموعه داده متعادل از 12444 تصویر داده افزایی شده است. سپس داده های افزایش یافته برای آموزش معماری مبتنی بر ViT برای طبقه بندی انواع مختلف گلبول های سفید مورد استفاده قرار گرفته است. دراولین مرحله از روش پیشنهادی، یک توکنایزر کانولوشن برای استخراج پچ تصاویر اعمال شده است. این پچ ها فلت شده و به عنوان ورودی برای ساختار مبتنی بر ViT برای شناسایی زیر کلاس ها در مرحله دوم استفاده شده اند. نتایج به دست آمده با استفاده از لوکوویت نشان می دهد صحت شبکه پیشنهادی 99.04 درصد است که نسبت به شبکه های پیشرفته برتری دارد.کلید واژگان: گلبول های سفید، طبقه بندی تصویر، یادگیری عمیق، شبکه عصبی کانولوشن، ترانسفورمر بیناییThe identification and evaluation of leukocytes are important to assess the quality of the human immune system; however, the analysis of blood smears depends on the pathologist’s expertise. The manual method for analyzing and classifying WBCs is costly and time-consuming and can result in errors in detection. Most deep learning methods use CNN-based models for white blood cell classification. This paper discusses the use of a ViT-based network, for the classification of leukocytes (WBCs) in a blood sample. The Dataset used in this paper consists of 352 images with a size of 320x240, which was augmented through techniques to create a balanced dataset of 12444 images. The augmented data was then used to train a ViT-based architecture to classify the different types of WBCs. As the first step of the proposed algorithm, a convolutional tokenizer has been applied for patch extraction of images. These patches have been flattened and have been used as input for a ViT-based structure to recognize the subclasses in the second step. The results obtained using Leukovit show that the accuracy of the proposed network is 99.04% which is outperforming the state-of-the-art networks.Keywords: White Blood Cells, Image Classification, Deep Learning, Convolutional Neural Network, Vision Transformer
-
Rice is one of the most important staple crops in the world and provides millions of people with a significant source of food and income. Problems related to rice classification and quality detection can significantly impact the profitability and sustainability of rice cultivation, which is why the importance of solving these problems cannot be overstated. By improving the classification and quality detection techniques, it can be ensured the safety and quality of rice crops, and improving the productivity and profitability of rice cultivation. However, such techniques are often limited in their ability to accurately classify rice grains due to various factors such as lighting conditions, background, and image quality. To overcome these limitations a deep learning-based classification algorithm is introduced in this paper that combines the power of convolutional neural network (CNN) and long short-term memory (LSTM) networks to better represent the structural content of different types of rice grains. This hybrid model, called CNN-LSTM, combines the benefits of both neural networks to enable more effective and accurate classification of rice grains. Three scenarios are demonstrated in this paper include, CNN, CNN in combination with transfer learning technique, and CNN-LSTM deep model. The performance of the mentioned scenarios is compared with the other deep learning models and dictionary learning-based classifiers. The experimental results demonstrate that the proposed algorithm accurately detects different rice varieties with an impressive accuracy rate of over 99.85%, and 99.18% to identify quality for varying combinations of rice varieties with an average accuracy of 99.18%.
Keywords: Rice Classification, Quality Detection, Convolutional Neural Network, Long Short-Term Memory, Transfer Learning -
نشریه دستاوردهای نوین در برق،کامپیوتر و فناوری، سال چهارم شماره 2 (پیاپی 11، تابستان 1403)، صص 23 -33
بیماری کووید-19 که باعث سندرم حاد تنفسی می شود، یک بیماری مسری و کشنده است که اثرات مخربی بر جامعه و زندگی انسان دارد و به طور قابل توجهی بر اقتصاد جهان تاثیر گذاشته است. حیاتی ترین گام در مبارزه با بیماری کووید-19 تشخیص سریع بیماران مبتلا است. تصاویر سی تی قفسه سینه و کیت های تشخیصی RT-PCR اغلب برای تشخیص بیماری استفاده می شوند. هر دو روش ذکر شده با برخی از مشکلات روبرو هستند، به این ترتیب در پژوهش های اخیر از مدل های یادگیری عمیق برای تشخیص بیماری کووید-19 استفاده شده است. مدل های یادگیری عمیق مدل هایی سریع و دقیق هستند که برای تشخیص این بیماری در نظر گرفته شده اند. روش پیشنهادی در این مقاله، استفاده از شبکه عصبی کانولوشن از پیش آموزش دیده برای تشخیص بیماری کووید-19 بر روی دیتاست سی تی اسکن SARS-COV-2 است. این دیتاست شامل1252 سی تی اسکن مثبت برای عفونت کووید-19 و 1230 سی تی اسکن برای بیماران غیر آلوده به عفونت کووید-19 می باشد. شبکه عصبی کانولوشن از پیش آموزش دیده InceptionResNetV2 در مقایسه با سایر شبکه های از پیش آموزش دیده به نتایج بهتری، از جمله صحت 97.59%، دقت 98.78%، بازیابی 96.41% و میانگین F1 %97.58 دست یافته است.
کلید واژگان: یادگیری انتقالی، بیماری کووید-19، تصاویر سی تی قفسه سینه، شبکه عصبی کانولوشن، یادگیری عمیقJournal of New Achievements in Electrical, Computer and Technology, Volume:4 Issue: 2, 2024, PP 23 -33Covid-19, which causes acute respiratory syndrome, is a contagious and fatal disease that has devastating effects on society and human life, and has significantly affected the world economy. The most critical step in the fight against Covid-19 is the rapid diagnosis of infected patients. Chest CT images and RT-PCR diagnostic kits are often used to diagnose the disease. Both mentioned methods face some problems, thus in recent research, deep learning models have been used to diagnose the disease of Covid-19. Deep learning models are fast and accurate models that are considered to diagnose this disease. The proposed method in this article is to use a pre-trained convolutional neural network to diagnose the disease of Covid-19 on the SARS-COV-2 CT scan dataset. This dataset includes 1252 CT scan images belonging to COVID-19 cases and 1230 CT scan images belonging to healthy cases. The pre-trained convolutional neural network InceptionResNetV2 has achieved better results compared to other pre-trained networks, including 97.59% accuracy, 98.78% precision, 96.41% recall and 97.58% F1-Score.
Keywords: Transfer Learning, Covid-19 Disease, Chest CT Scans, Convolutional Neural Network, Deep Learning -
Journal of Electrical and Computer Engineering Innovations, Volume:12 Issue: 2, Summer-Autumn 2024, PP 401 -408Background and ObjectivesRe-identifying individuals due to its capability to match a person across non-overlapping cameras is a significant application in computer vision. However, it presents a challenging task because of the large number of pedestrians with various poses and appearances appearing at different camera viewpoints. Consequently, various learning approaches have been employed to overcome these challenges. The use of methods that can strike an appropriate balance between speed and accuracy is also a key consideration in this research.MethodsSince one of the key challenges is reducing computational costs, the initial focus is on evaluating various methods. Subsequently, improvements to these methods have been made by adding components to networks that have low computational costs. The most significant of these modifications is the addition of an Image Re-Retrieval Layer (IRL) to the Backbone network to investigate changes in accuracy.ResultsGiven that increasing computational speed is a fundamental goal of this work, the use of MobileNetV2 architecture as the Backbone network has been considered. The IRL block has been designed for minimal impact on computational speed. By examining this component, specifically for the CUHK03 dataset, there was a 5% increase in mAP and a 3% increase in @Rank1. For the Market-1501 dataset, the improvement is partially evident. Comparisons with more complex architectures have shown a significant increase in computational speed in these methods.ConclusionReducing computational costs while increasing relative recognition accuracy are interdependent objectives. Depending on the specific context and priorities, one might emphasize one over the other when selecting an appropriate method. The changes applied in this research can lead to more optimal results in method selection, striking a balance between computational efficiency and recognition accuracy.Keywords: Person Re-Identification, Deep Learning, Convolutional Neural Network, Image Detection
-
Using intelligent approaches in diagnosing the COVID-19 disease based on machine learning algorithms (MLAs), as a joint work, has attracted the attention of pattern recognition and medicine experts. Before applying MLAs to the data extracted from infectious diseases, techniques such as RAT and RT-qPCR were used by data mining engineers to diagnose the contagious disease, whose weaknesses include the lack of test kits, the placement of the specialist and the patient pointed at a place and low accuracy. This study introduces a three-stage learning framework including a feature extractor by visual geometry group 16 (VGG16) model to solve the problems caused by the lack of samples, a three-channel convolution layer, and a classifier based on a three-layer neural network. The results showed that the Covid VGG16 (CoVGG16) has an accuracy of 96.37% and 100%, precision of 96.52% and 100%, and recall of 96.30% and 100% for COVID-19 prediction on the test sets of the two datasets (one type of CT-scan-based images and one type of X-ray-oriented ones gathered from Kaggle repositories).
Keywords: COVID-19 Prediction, Convolutional Neural Network, Transfer Learning, Computer Vision, Image Processing -
An optimization algorithm based on training and learning is formed based on the process of training and learning in a class. A deep neural network is one of the types of feedforward neural networks whose connection pattern among its neurons is inspired by the visual cortex of animals' brain. The present study considers decreasing prediction error for the types of time series and the uncertainty in estimation parameters, improving the structure of the deep neural network and increasing response speed in the proposed neural network method; besides, the competitive performance and the collaboration among the neurons of deep neural network are also increased. Selected data is related to Qeshm weather (suitable weather conditions to study our purpose) prediction during 2016 onwards. In this study, for the purpose of analyzing the prediction issue of power consumption of domestic expenses in the indefinite and severe fluctuation mode, we decided to combine two methods of Long Short-Term Memory and Convolutional Neural Network. For the training of the deep network, the BP algorithm is used.Keywords: Optimization algorithm, time series, Estimation, Prediction, Convolutional Neural Network, Long Short-Term Memory
-
Fingerprint verification has emerged as a cornerstone of personal identity authentication. This research introduces a deep learning-based framework for enhancing the accuracy of this critical process. By integrating a pre-trained Inception model with a custom-designed architecture, we propose a model that effectively extracts discriminative features from fingerprint images. To this end, the input fingerprint image is aligned to a base fingerprint through minutiae vector comparison. The aligned input fingerprint is then subtracted from the base fingerprint to generate a residual image. This residual image, along with the aligned input fingerprint and the base fingerprint, constitutes the three input channels for a pre-trained Inception model. Our main contribution lies in the alignment of fingerprint minutiae, followed by the construction of a color fingerprint representation. Moreover, we collected a dataset, including 200 fingerprint images corresponding to 20 persons, for fingerprint verification. The proposed method is evaluated on two distinct datasets, demonstrating its superiority over existing state-of-the-art techniques. With a verification accuracy of 99.40% on the public Hong Kong Dataset, our approach establishes a new benchmark in fingerprint verification. This research holds the potential for applications in various domains, including law enforcement, border control, and secure access systems.
Keywords: Fingerprint, Verification, Deep Learning, Pretrained, Convolutional Neural Network -
Fungal infections, capable of establishing in various tissues and organs, are responsible for many human diseases that can lead to serious complications. The initial step in diagnosing fungal infections typically involves the examination of microscopic images. Direct microscopic examination using potassium hydroxide is commonly employed as a screening method for diagnosing superficial fungal infections. Although this type of examination is quicker than other diagnostic methods, the evaluation of a complete sample can be time-consuming. Moreover, the diagnostic accuracy of these methods may vary depending on the skill of the practitioner and does not guarantee full reliability. This paper introduces a novel approach for diagnosing fungal infections using a modified VGG19 deep learning architecture. The method incorporates two significant changes: replacing the Flatten layer with Global Average Pooling (GAP) to reduce feature count and model complexity, thereby enhancing the extraction of significant features from images. Additionally, a Dense layer with 1024 neurons is added post-GAP, enabling the model to better learn and integrate these features. The Defungi microscopic dataset was used for training and evaluating the model. The proposed method can identify fungal diseases with an accuracy of 97%, significantly outperforming the best existing method, which achieved an accuracy of 92.49%. This method not only significantly outperforms existing methods, but also, given its high accuracy, is valuable in the field of diagnosing fungal infections. This work demonstrates that the use of deep learning in diagnosing fungal diseases can lead to a substantial improvement in the quality of health services.
Keywords: Fungal Infections, Deep Learning, Convolutional Neural Network, VGG19 -
This paper provides a review of deep learning-based methods for fault diagnosis of electrical motors. Electrical motors are crucial components in various industrial applications, and their efficient operation is essential for maintaining productivity and minimizing downtime. Traditional fault diagnosis methods have limitations in accurately detecting and classifying motor faults. Deep learning, a subset of machine learning, has emerged as a promising approach for improving fault diagnosis accuracy. This review discusses various deep learning methods, such as convolutional neural networks, recurrent neural networks, autoencoders, transfer learning, and transformers that have been utilized for motor fault diagnosis. Additionally, it examines different datasets and features used in these methods, highlighting their advantages and limitations. The paper also discusses challenges and future research directions in this field, such as data augmentation, transfer learning, and interpretability of deep learning models. Based on the findings, it is concluded that deep learning-based technologies are replacing manual expert involvement as the new norms in this field. Besides, methods are getting more standard, and official benchmarks are being created. A summarized table is provided at the end of the paper and numerous methods have been reported.
Keywords: Fault Diagnosis, Deep Learning, Inter-Turn Fault Diagnosis, Bearing Fault Diagnosis, Convolutional Neural Network, Transfer Learning -
در سال های اخیر با گسترش و موفقیت شبکه های کانولوشنی، موضوع یادگیری عمیق بیش از پیش مورد توجه قرار گرفته است. از آنجا که شبکه های کانولوشنی شامل لایه های زیادی هستند، یادگیری بهینه لایه های شبکه از اهمیت بالایی برخوردار است. در این مقاله، مدل جدیدی به نام چهار-جریان، با هدف کمک به خطی کردن فضای داده از طریق تبدیل عدم تشابه بازنمایی ارایه و تاثیر این تبدیل روی طبقه بندهای استاندارد برای داده های مصنوعی و تصاویر سیفار-10 بررسی و دو مدل مبتنی بر پیش پردازش داده با تبدیل عدم تشابه بازنمایی و فیلترهای سوبل و آشکارساز لبه تحلیل شده است. مدل چهار-جریان به دلیل بالا رفتن تعداد پارامترهای مدل و به تبع آن ظرفیت شبکه میزان 2/3 درصد افزایش دقت داشته است و اضافه نمودن بازنمایی عدم تشابه در جایی که طبقه بند نتواند با ویژگی های اصلی، تفکیک پذیری بالایی انجام دهد، می تواند تا حدودی با افزودن ویژگی های خطی به تفکیک پذیری کلاس ها کمک کند.
کلید واژگان: سیستم کانولوشنی، فضای برداری عدم تشابه، ماتریس عدم تشابه بازنمایی، مرجع، یادگیری عمیقWith the expansion and success of convolutional networks, the topic of deep learning has attracted increasing attention in recent years; Since convolutional networks include many layers, optimal learning of network layers is of great importance. In this paper, a new model, called the 4-stream model, is presented with the aim of helping to linearize the data space using representational dissimilarity transformation, and the effects of this transformation on standard classifications for artificial data and Cifar10 images are investigated. Then, two models based on data preprocessing with dissimilarity transform representation and Sobel and Edge Detector filters are analyzed. The 4-stream model increased the accuracy by 3.2% due to the increase in the number of model parameters, and hence the capacity of the network. Besides, adding the dissimilarity representation wherever the classifier cannot perform a high-resolution classification by merely using the main features, can help to increase the discriminability of classes by adding linear features.
Keywords: convolutional neural network, deep learning, Dissimilarity Vector Space, prototype, Representational Dissimilarity Matrix -
در سال های اخیر شبکه های عصبی کانولوشنال به طور فزاینده ای در کاربردهای مختلف بینایی ماشین و به ویژه در شناسایی و طبقه بندی خودکار تصاویر مورد استفاده قرار گرفته اند. این نوع از شبکه های عصبی مصنوعی با شبیه سازی عملکرد قشر بینایی مغز قدرتمندترین ساختار را در تجزیه و تحلیل داده های بصری دارند. اما تنوع تصاویر دیجیتال و گوناگونی محتوی و ویژگی های آن ها ایجاب می کند تا برای دستیابی به کارایی بالاتر در هر مسیله ی طبقه بندی، شبکه های کانولوشنال به صورت اختصاصی طراحی و پارامترهای آن ها به دقت تنظیم شوند. در این راستا، در پژوهش حاضر ضرایبی بهینه برای فیلترهای لایه ی کانولوشن در شروع آموزش شبکه بکار رفته تا از این طریق دقت طبقه بندی در شبکه افزایش و زمان آموزش کاهش یابد. این کار با طراحی و بکارگیری مجموعه ای از فیلترهای تخصصی برای لایه ی کانولوشن در قالب یک بانک فیلتر و جایگذاری آن ها به جای فیلترهای تصادفی انجام پذیرفته و بر روی پایگاه داده ی تصاویر اعداد دست نویس MNIST ارزیابی شده است. آزمایشات ما بر روی شبکه ی کانولوشنال تک لایه با سه نوع فیلترگذاری (فیلترهای عدد ثابت، عدد تصادفی و بانک فیلتر) میانگین دقت طبقه بندی تصاویر اعداد دست نویس MNIST را در 50 بار آموزش شبکه به ترتیب 94/74، 47/86 و 89/91 درصد و برای شبکه ی کانولوشنال سه لایه به ترتیب 82/88، 16/96 و 14/99 درصد نشان دادند. این نتایج نشان می دهند که فیلترهای بکار رفته در مدل پیشنهادی در مقایسه با فیلترهای تصادفی ویژگی های موثرتری از تصاویر را استخراج نموده و با شروع آموزش شبکه از نقطه ی مناسبتر، بدون افزایش هزینه ی محاسباتی دقت طبقه بندی را افزایش داده اند. بنابراین می توان نتیجه گرفت که ضرایب اولیه ی فیلترهای لایه ی کانولوشن بر دقت طبقه بندی شبکه های کانولوشنال موثر است و با بکارگیری فیلترهای موثرتر در لایه ی کانولوشن می توان این شبکه ها را خاص مسیله ساخته و از این طریق کارآیی شبکه را افزایش داد.
کلید واژگان: شبکه های عصبی کانولوشنال، یادگیری عمیق، طبقه بندی تصاویر، اعداد دست نویسBackgroundIn recent years, convolutional neural networks (CNNs) have been increasingly used in various applications of machine vision. CNNs simulate the function of the brain's visual cortex and have a powerful structure for analyzing visual images. However, the diversity of digital images, their content, and their features necessitate that CNN networks are specially designed, and their parameters are carefully adjusted to achieve higher efficiency in any classification problem. In this regard, in many previous studies, researchers have attempted to increase the efficiency of the CNNs by setting their adjustable parameters more accurately.
New methodNew method In this study, we presented a novel initializing method for the kernels of the first convolutional layer of the CNN networks. We designed a filter bank with specialized kernels and used them in the first convolution layer of the proposed models. These kernels, compared to the random kernels in traditional CNNs, extract more effective features from the input images without increasing the computational cost of the network, and improve the classification accuracy by covering all the important characteristics.
ResultsThe dataset used in this paper was the MNIST database of handwritten digits. We examined the performance of CNN networks when three different types of kernels were used in their first convolution layer. The first group of kernels had constant coefficients; the second group had random coefficients, and finally, the kernels of the third group were specially designed to extract a wide range of image features. Our experiments on a single-layer CNN network with three types of kernels (constant numbers, random numbers, and filter-bank) showed the average classification accuracy of MNIST images in 50 times of network training to be 74.94%, 86.47%, and 91.89%, respectively, and for a three-layer CNN network, 88.82%, 96.16%, and 99.14%, respectively. Comparison with existing methods Compared to the kernels with randomized coefficients, the use of specialized kernels in the first convolution layer of the CNN networks has several important advantages: 1) They can be designed to extract all important features of the input images, 2) They can be designed more effectively based on the problem in hand, 3) They cause the training to start from a more appropriate point, and in this way, the speed of training and the classification accuracy of the network increase.
ConclusionThis study provides a novel method for initializing kernels in convolution layers of CNN networks to enhance their performance in image classification works. Our results show that compared to random kernels, the kernels used in the proposed models extract more effective features from the images at different frequencies and increase the classification accuracy by starting the training algorithm from a more appropriate point, without increasing the computational cost. Therefore, it can be concluded that the initial coefficients of the convolution layer kernels are effective on the classification accuracy of CNN networks, and by using more effective kernels in the convolution layers, these networks can be made specific to the problem and, in this way, increase the efficiency of the network.
Keywords: convolutional neural network, deep learning, image classification, handwritten digit -
Scientia Iranica, Volume:30 Issue: 6, Nov-Dec 2023, PP 2143 -2161The heating, ventilation, and air conditioning (HVAC) control system is responsible for the efficient building energy system. Indoor energy consumption patterns can be monitored and reduced intelligently. Occupancy information plays a vital role to save a reasonable amount of energy. Traditional energy monitoring and control systems can be improved with the installation of the occupancy monitoring system which will consist of a network of sensors and cameras. In this research work, we propose a new and revolutionary convolutional neural network (CNN) based on real-time camera occupancy detection and recognition techniques across different sorts of sensors that provide realistic low-cost energy-saving solutions with robust graphical processing units (GPUs). This occupancy information will decide the energy behaviour inside buildings. Decision-making tools can be used to select the appropriate occupancy detection and recognition alternative for indoor environment and energy monitoring and management. In this research work, we introduce and develop the "Fermatean fuzzy prioritized weighted average and geometric operator". These aggregation operators (AOs) are a modern approach to modelling complexities in decision-making. In the end, we give an algorithm for an intelligent decision support system (IDSS) using proposed AOs to compare our CNN based method with other existing sensors techniques.Keywords: Fermatean fuzzy numbers, Aggregation operators, Video Processing, Convolutional Neural Network, Human Recognition, Detection
-
Breast cancer is a disease of abnormal cell proliferation in the breast tissue organs. One method for diagnosing and screening breast cancer is mammography. However, the results of this mammography image have limitations because it has low contrast and high noise and contrast as non-coherence. This research segmented breast cancer images derived from Ultrasonography (USG) photo using a Convolutional Neural Network (CNN) using the U-Net architecture. Testing on the CNN model with the U-Net architecture results the highest Mean Intersection over Union (Mean IoU) value in the data scenario with a ratio of 70:30, 100 epochs, and a learning rate of 5x10-5, which is 77%, while the lowest Mean IoU in the data scenario with a ratio 90:10, 50 epochs, and a learning rate of 1x10-4 learning rate, which is 64.4%.
Keywords: Breast Cancer, Convolutional neural network, U-Net, Mean IoU -
The coronavirus disease or COVID-19, as a global disease, is an unprecedented health care crisis due to increasing mortality and its high rate of infection. Patients usually show significant complications in the respiratory system. This disease is caused by SARS-CoV-2. Decreasing the time of diagnosis is essential for reducing deaths and low spreading of the virus. Also, using the optimal tool in the pediatric setting and Intensive care unit (ICU) is required. Therefore, using lung ultrasound is recommended. It does not have any radiation and it has a lower cost. However, it makes noisy and low-quality data. In this paper, we propose a novel approach called Uniform Local Binary Pattern on Five intersecting Planes and convolutional neural Network (ULBPFP-Net) that overcomes the said limitation. We extract worthwhile features from five planes for feeding a network. Our experiments confirm the success of the ULBPFP-Net in COVID-19 diagnosis compared to the previous approaches.
Keywords: COVID-19, Convolutional Neural Network, ULBPFP-Net, Lung Ultrasound Images -
برای برقراری تعادل تولید - مصرف، طراحی یک روش که اطلاعات اولیه را برای بار مصرفی در ساعات آتی با سطح دقت و قابلیت اطمینان مطلوبی ضروری می باشد. مسیله ی پیش بینی بار با ظهور مفاهیم جدید در شبکه های برق و تجدید ساختار سیستم های قدرت روز به روز پیچیده تر می شود. این مقاله یک شبکه باقی مانده عصبی را برای پیش بینی با دقت بالای بارهای الکتریکی پیشنهاد می کند. در شبکه ی طراحی شده با ترکیب دو شبکه ی باقی مانده عمیق قدرتمند توانایی یادگیری ارتقا یافته و همچنین از مشکلاتی همچون بیش برازش و کاهش/افزایش گرادیان جلوگیری شده است. همچنین، برای یادگیری کامل مشخصات زمانی و مکانی، شبکه ی عصبی کانولوشنی (CNN) و واحد بازگشتی حافظه دار (GRU) ترکیب شده و در ساختار چندسطحی باقی مانده ادغام شده است. تحلیل ها فصلی و تحقیق بر روی چندین مورد مختلف با استفاده از داده های بار مصرفی واقعی در شهر شیراز، ایران موثر بودن روش را تایید می کند و برتری روش پیشنهاد از طریق مقایسه با روش های پیشین نشان داده شده است.
کلید واژگان: پیش بینی کوتاه مدت بار، شبکه ی عصبی باقی مانده عمیق چند سطحی، شبکه بازگشتی حافظه دار، شبکه ی عصبی کانولوشنیTo maintain supply-demand balance, it is crucial to design a method to provide prior knowledge on load consumption in look-ahead time with high level of accuracy and reliability. The load prediction problem is becoming more and more challenging due to emerging new concepts in the electrical grids and reconstruction of the power networks. This paper develops a residual neural network to predict the electrical loads with high level of accuracy. In the designed network with combining two powerful deep residual network, a new residual deep network is proposed to improve the learning ability as well as prevent problems like overfitting and gradient reduction/explosion. Furthermore, to fully understand the spatial-temporal features, convolutional neural network (CNN) and gated recurrent unit (GRU) are combined and integrated into the designed multi-level deep network. The seasonal analysis and investigating several cases using actual electrical load consumption in Shiraz, Iran verifies the effectiveness of the proposed method and higher accuracy of the proposed deep network in comparison with other methods demonstrate the superiority of the proposed method.
Keywords: Short-term load forecasting, multi-level residual deep neural network, gated recurrent network, convolutional neural network
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.