به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

m5rules algorithm

در نشریات گروه برق
تکرار جستجوی کلیدواژه m5rules algorithm در نشریات گروه فنی و مهندسی
تکرار جستجوی کلیدواژه m5rules algorithm در مقالات مجلات علمی
  • ریحانه سادات حافظی فرد، جمال زارع پور احمدآبادی*، الهام عباسی هرفته

    باتوجه به افزایش جمعیت و اینکه منابع انرژی رو به کاهش است، در این تحقیق به مطالعه انرژی مصرفی خانگی پرداخته شده است. هدف از این پژوهش پیش بینی عوامل موثر بر انرژی مصرفی خانگی می باشد. برای این پیش بینی از سه الگوریتم قواعدM5 ، نزدیک ترین همسایه و  جنگل تصادفی استفاده شده است که در نرم افزار  weka  موجود می باشد. در این پژوهش از الگوریتم ارزیابی همبستگی ویژگی ها برای انتخاب بهترین عوامل نیز استفاده شده است. این الگوریتم مهمترین عوامل موثر بر انرژی مصرفی و میزان تاثیر آنها را مشخص می کند. نتایج حاصل از این بررسی نشان می دهد که چراغ ها و وسایل روشنایی، درجه حرارت و دما در اتاق نشیمن، درجه حرارت و دما در خارج از ساختمان، درجه حرارت و دما در خارج از ایستگاه هواشناسی چیورس،  سرعت وزیدن باد، رطوبت در منطقه آشپزخانه و درجه حرارت و دما در محل لباسشویی بیشترین تاثیر را در مصرف انرژی خانگی دارد. همچنین از بین الگوریتم های آزموده شده،  جنگل تصادفی بهترین نتیجه را به دست می دهد.

    کلید واژگان: انرژی مصرفی خانگی، الگوریتم M5Rules، الگوریتم نزدیکترین همسایه، الگوریتم جنگل تصادفی، ارزیابی همبستگی ویژگی ها، وسایل روشنایی، دما، ایستگاه هواشناسی چیورس
    Reyhane Sadat Hafezifard, Jamal Zarepour-Ahmadabadi*, Elham Abbasi

    Due to increasing population and decreasing energy sources, this research studies the consumption of domestic energy. The purpose of this study is to predict the factors affecting household energy consumption. To do this, we use 3 algorithms, M5Rules, K-nearest neighbor and random forest, available in Weka software. In this study, the feature correlation algorithm is used to select the most important factors affecting energy consumption and their impact. The results show that lights and fixtures, temperature of the living room, outside temperature, temperature outside of Chievres Station, wind speed, humidity in the kitchen and the temperature in the laundry area have the most impact on household energy consumption. Among the methods, random forest algorithm presented the best results.

    Keywords: Household Energy Consumption, M5Rules Algorithm, K-NN, Random Forest Algorithm, Correlation Evaluation of Properties, Lighting Devices, Temperature, Chievers Weather Station
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال