multi-layer perceptron
در نشریات گروه برق-
با توجه به هزینه کمتر و انعطاف پذیری بیشتر، انتقال صدا از طریق پروتکل اینترنت (VoIP) به طور گسترده ای در ارتباطات راه دور استفاده می شود. تنوع پایانه های VoIP باعث آسیب پذیری آنها می شود. یک راه متداول برای ایمن سازی VoIP، شامل تشخیص نفوذ مبتنی بر یادگیری ماشین است. با توجه به تنوع ترافیک و عدم وجود برچسب کلاس برای آموزش سیستم های تشخیص نفوذ (IDS) در بسیاری از مواقع، بر رویکردهای خوشه بندی (یادگیری بدون ناظر) متمرکز شده اند. اما سیستم های خوشه بندی منفرد نمی توانند تنوع مقادیر ویژگی ها را به خوبی پوشش دهند و برخی از نمونه های ترافیک ممکن است به عنوان نقاط پرت شناسایی شوند. مدل پیشنهادی، به عنوان یک رویکرد تجمیعی برای حل این مسائل، روی استفاده از الگوریتم خوشه بندی دومرحله ای متمرکز شده و سعی می کند با ایجاد بهبودی در آن، فرآیند تشخیص نفوذ مبتنی بر خوشه بندی را بهبود دهد. علاوه بر این، با توجه به اهمیت فرآیند انتخاب ویژگی، ترکیبی از الگوریتم شبیه سازی تبرید (SA) و شبکه عصبی پرسپترون چندلایه (MLP)، برای شناسایی ویژگی های برتر مورد استفاده در خوشه بندی بسته های VoIP، در قالب بسته های عادی یا حمله انکار سرویس (DoS)، حمله کاربر به ریشه (U2R)، حمله کاربر از راه دور (R2L) و حمله پویش گر مورد بهره برداری قرار گرفته است. بر اساس نتایج ارزیابی بر روی مجموعه داده "آزمایشگاه امنیت شبکه- کشف دانش در پایگاه های داده ای" (NSL-KDD)، توسط نرم افزار متلب، انتخاب ویژگی پیشنهادی با کاهش ویژگی ها به 10 و 8، زمان آموزش و آزمایش را به ترتیب 77 درصد و 80 درصد کاهش می دهد. همچنین در مقایسه با تعدادی از مطالعات قبلی، IDS پیشنهادی بهبود متوسطی معادل 34/3 درصد، 17/14 درصد و 87/32 درصد را به ترتیب در دقت، نرخ تشخیص و معیار F نشان می دهد.
کلید واژگان: الگوریتم بهینه سازی، انتخاب ویژگی، پرسپترون چندلایه، خوشه بندی تجمیعی، سیستم تشخیص نفوذ، شبیه سازی تبریدJournal of Intelligent Procedures in Electrical Technology, Volume:16 Issue: 62, Summer 2025, PP 45 -66Due to lower cost and greater flexibility, voice over internet protocol (VoIP) is widely used in telecommunications. A variety of VoIP terminals causes them to be vulnerable. A common way to secure VoIP includes intrusion detection based on machine learning. Due to the diversity of traffics and lack of class labels for training Intrusion detection systems (IDSs) in many situations, clustering approaches (unsupervised learning) have been focused on. But individual cluster systems can't cover the diversities of feature values well, and some traffic samples may be identified as outliers. As an ensemble approach, the proposed model for solving these problems focuses on using TwoStep clustering algorithm, and by improving it, tries to improve the clustering-based intrusion detection. Moreover, regarding the importance of the feature selection process, a combination of Simulated Annealing algorithm (SA) and Multi-Layer Perceptron (MLP) has been exploited for identifying superior features used for clustering VoIP packets, as Normal or involving DoS, R2L, U2R either Probe attacks. Based on evaluation results obtained on the dataset “Network Security Lab-Knwledge Discovery in Databases” (NSL-KDD) by MATLAB, the proposed feature selection reduced the training and testing times, averagely by 77% and 80%, respectively, by reducing the features to 10 and 8. Also, compared to previous works, the proposed IDS shows average improvements in Accuracy, Detection rate, and F-Measure at 3.34 %, 14.17 %, and 32.87 %, respectively.
Keywords: Ensemble Clustering, Feature Selection, Intrusion Detection System, Multi-Layer Perceptron, Optimization Algorithm, Simulated Annealing -
The concept of the Internet of Things (IoT) and its countless applications are considered as an inseparable part of the modern technology era. The placement of IoT- based devices and their limitations make the environment more vulnerable due to its openness. Security plays a critical role in IoT applications due to the pervasiveness of the IoT in all of the aspects in daily life. On the other hand, final devices such as their limited computing power, large number of devices connected to each other, and communication between devices and users do not allow for using traditional methods to solve security issues. Intrusion detection systems (IDSs) which can separate malicious traffic from normal mode are among the effective solutions in this field. the installed IDS should be highly accurate and lightweight to affect accuracy. In order to bring services closer to electronic devices, a concept called “fog” has emerged. A large number of studies have been conducted to make the light IDS for IoT networks utilizing various methods. The present study aims to proposea two-layer hierarchical IDS based on machine learning, which detects attacks by considering the limitations of IoT resources. In order to create an efficient and accurate IDS, the combination of two improved K-nearest neighbor (KNN) algorithms and a multi-layer perceptron (MLP) neural network was applied in the fog and cloud to separate the attacks from normal traffic, respectively. we evaluated our proposed method using IOT23 dataset. The results prove the improvement in accuracy, compared to the previous methods.
Keywords: Iot Security, Intrusion Detection System, Fog, Cloud, K-Nearest Neighbor, Multi-Layer Perceptron -
Distributed Denial of Service (DDoS) attacks are among the primary concerns in internet security today. Machine learning can be exploited to detect such attacks. In this paper, a multi-layer perceptron model is proposed and implemented using deep machine learning to distinguish between malicious and normal traffic based on their behavioral patterns. The proposed model is trained and tested using the CICDDoS2019 dataset. To remove irrelevant and redundant data from the dataset and increase learning accuracy, feature selection is used to select and extract the most effective features that allow us to detect these attacks. Moreover, we use the grid search algorithm to acquire optimum values of the model’s hyperparameters among the parameters’ space. In addition, the sensitivity of accuracy of the model to variations of an input parameter is analyzed. Finally, the effectiveness of the presented model is validated in comparison with some state-of-the-art works.Keywords: distributed denial of service, network security, machine learning, Multi-layer perceptron, CICDDoS2019
-
The purpose of this study is to predict catching diabetes in patients having the β-thalassemia. Here, an intelligent system predicts risk of catching diabetes in patients having major thalassemia and intermedia, using multilayer perceptron according to the thalassemia dataset, ZAFAR. In this work, the clinical characteristics of 255 patients, having β-thalassemia, have been studied in two groups of diabetic and non- diabetic patients. Research data includes gender, age, parental family relationship, type of thalassemia, the spleen, gall bladder and liver condition, the age of blood transfusion, blood transfusion intervals, the number of received blood units in each period, the condition of iron overload, the age of start iron chelation therapy, the average of heart T2 rates, the liver T2 and LIC, the number of years having MRI, serum ferritin level, glucose and the number of years the patient was observe. The accuracy of artificial neural network in diagnosing the patients having thalassemia and exposing diabetes would be 80.78% according to the collected dataset. The accuracy rate of the system is 89.48%, using this intelligent system and doing pre-processing. This system has a desirable performance in predicting catching diabetes in patients having β-thalassemia. The best mean square error in this model is 0.07 which results in reducing learning time and increasing the system accuracy. Based on the obtained results from this system, there are two important factors in catching diabetes by the patients having β-thalassemia; first the number of years passed by patient with the high serum ferritin level and second is the glucose level rate in previous years long. The purpose of this study is to predict catching diabetes in patients having the β-thalassemia. Here, an intelligent system predicts risk of catching diabetes in patients having major thalassemia and intermedia, using multilayer perceptron according to the thalassemia dataset, ZAFAR. In this work, the clinical characteristics of 255 patients, having β-thalassemia, have been studied in two groups of diabetic and non- diabetic patients. Research data includes gender, age, parental family relationship, type of thalassemia, the spleen, gall bladder and liver condition, the age of blood transfusion, blood transfusion intervals, the number of received blood units in each period, the condition of iron overload, the age of start iron chelation therapy, the average of heart T2 rates, the liver T2 and LIC, the number of years having MRI, serum ferritin level, glucose and the number of years the patient was observe. The accuracy of artificial neural network in diagnosing the patients having thalassemia and exposing diabetes would be 80.78% according to the collected dataset. The accuracy rate of the system is 89.48%, using this intelligent system and doing pre-processing. This system has a desirable performance in predicting catching diabetes in patients having β-thalassemia. The best mean square error in this model is 0.07 which results in reducing learning time and increasing the system accuracy. Based on the obtained results from this system, there are two important factors in catching diabetes by the patients having β-thalassemia; first the number of years passed by patient with the high serum ferritin level and second is the glucose level rate in previous years long. The purpose of this study is to predict catching diabetes in patients having the β-thalassemia. Here, an intelligent system predicts risk of catching diabetes in patients having major thalassemia and intermedia, using multilayer perceptron according to the thalassemia dataset, ZAFAR. In this work, the clinical characteristics of 255 patients, having β-thalassemia, have been studied in two groups of diabetic and non- diabetic patients. Research data includes gender, age, parental family relationship, type of thalassemia, the spleen, gall bladder and liver condition, the age of blood transfusion, blood transfusion intervals, the number of received blood units in each period, the condition of iron overload, the age of start iron chelation therapy, the average of heart T2 rates, the liver T2 and LIC, the number of years having MRI, serum ferritin level, glucose and the number of years the patient was observe. The accuracy of artificial neural network in diagnosing the patients having thalassemia and exposing diabetes would be 80.78% according to the collected dataset. The accuracy rate of the system is 89.48%, using this intelligent system and doing pre-processing. This system has a desirable performance in predicting catching diabetes in patients having β-thalassemia. The best mean square error in this model is 0.07 which results in reducing learning time and increasing the system accuracy. Based on the obtained results from this system, there are two important factors in catching diabetes by the patients having β-thalassemia; first the number of years passed by patient with the high serum ferritin level and second is the glucose level rate in previous years long.Keywords: β-thalassemia, Diabetes, Artificial Neural Network, Multi-Layer Perceptron
-
یکی از مهم ترین مسائل در مطالعات امنیت دینامیکی سیستم های قدرت بزرگ، تعیین زمان بحرانی رفع خطا برای مجموعه ای از اغتشاش های محتمل است. با توجه به تغییر شرایط سیستم، محاسبه زمان بحرانی رفع خطا باید به صورت پی درپی و در فواصل زمانی کوتاه انجام شود. این محاسبه هرچند که در شرایط برون خط صورت می گیرد، اما با توجه به حجم بالای محاسبات و فاصله زمانی کوتاه بین دو محاسبه، نیاز به استفاده از روش های سریع و با دقت بالا است. در این مقاله با استفاده از شبکه عصبی، تخمین دقیقی از زمان بحرانی رفع خطا به دست می آید. ورودی های شبکه عصبی از جنس تابع انرژی بوده و فقط با انجام یک بار شبیه سازی زمانی حاصل می شوند. این ورودی ها، حداقل انرژی جنبشی، حداکثر انرژی پتانسیل و شیب منحنی حداقل انرژی جنبشی می باشند. شبیه سازی های انجام شده در دو سیستم 9 و 39 شینه IEEE نشان می دهد که شبکه عصبی طراحی شده با دقت قابل قبولی زمان بحرانی رفع خطا را تخمین می زند.کلید واژگان: زمان بحرانی رفع خطا، انرژی بحرانی، سطح مرزی انرژی پتانسیل، نقاط تعادل ناپایدار، حداقل انرژی جنبشی، شبکه عصبی پرسپترون چندلایهOne of the important subjects in the dynamic security of large power systems is transient stability assessment for a set of probable disturbances. Due to changing system conditions, the critical clearing time calculation must be performed sequentially and in short time intervals. Although the computation is performed off-line, quick and accurate methods are needed because the computation amount is high and it must be repeated in short time intervals. In this paper a neural network is used to obtain an accurate estimation of the critical clearing time. The neural network inputs are minimal kinetic energy, critical energy and the slope of minimal kinetic energy curve. They are obtained using only one time simulation. The proposed method has been simulated on 9 and 39 - bus test systems. The results show that the designed neural network accurately estimates the critical clearing time.Keywords: Critical clearing time, Critical energy, Potential energy boundary surface, Unstable equilibrium point, Kinetic energy, Multi layer perceptron
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.