به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

spatiotemporal deep-learning method

در نشریات گروه برق
تکرار جستجوی کلیدواژه spatiotemporal deep-learning method در نشریات گروه فنی و مهندسی
تکرار جستجوی کلیدواژه spatiotemporal deep-learning method در مقالات مجلات علمی
  • Vida Esmaeili, Mahmood Mohassel Feghhi *
    Objective
    The Micro-Expression (ME), which automatically reveals genuine human emotions, has gained significant attention. Recognizing the ME is crucial for many real-time applications. However, there are significant challenges to overcome. For instance, the number of ME frames are limited due to their short duration, and the subtle facial movements can be hard to detect due to their low intensity. These challenges need to be addressed to improve ME recognition.
    Materials and Methods
    We propose a novel method for the ME recognition in real-time. In this method, first, the apex frame is spotted using the rotated local binary pattern from six planes (RLBPS) and correlation coefficient (CC). Next, three hand-crafted methods such as the multi-color rotated local binary pattern from six planes (MRLBPS), the histograms of directed gradients from six planes (HDGS), and the histogram of image gradient direction from six planes (HIGDS) extract the features from the apex frame and its surrounding frames. Finally, the stacks of features as matrixes are fed into a three-dimensional convolutional neural network (3D-CNN), and the output is the maximum recognition rate by voting three results.
    Results
    The proposed method has shown promising results when compared to most state-of-the-art methods. According to the results, an average precision of 99% has been obtained using our proposed method.
    Conclusion
    The combination of the RLBPS and the CC creates a strong method for spotting the apex frame. Also, feeding the stacks of spatiotemporal features into the 3D-ResNet increases the ME recognition rate in real-time.
    Keywords: Micro-Expression Recognition, Spatiotemporal Hand-Crafted Methods, Spatiotemporal Deep-Learning Method
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال