به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

support vector regression (svr)

در نشریات گروه برق
تکرار جستجوی کلیدواژه support vector regression (svr) در نشریات گروه فنی و مهندسی
تکرار جستجوی کلیدواژه support vector regression (svr) در مقالات مجلات علمی
  • Mohammad Amini Hoshiar, Sara Jafarian *, Ramezan Rezaian, Mahdi Sharifi Soltani
    Support Vector Machines (SVMs) are a valuable tool in the food industry due to their ability to handle complex, nonlinear relationships between variables, even with limited datasets, high-dimensional data, and noisy data. This makes SVMs well-suited for applications such as food quality and safety assessment, sensory evaluation, process optimization, and food authentication. Accordingly, a new approach is introduced to predict different features of a traditional yogurt drink, also called doogh. The proposed model combines the principles of Support Vector Regression with fuzzy logic to handle uncertainty and approximate complex relationships between inputs (retentate, xanthan, and shelf-life) and target variables including viscosity, syneresis, color values, and total acceptability. The implemented approach is particularly useful when dealing with problems where the relationships are not easily captured by traditional mathematical models due to their non-linearity or imprecision. Also, it mitigates the limitations of data availability. The predictive ability of the proposed model has been evaluated in terms of MSE, R2, RMSE, and MAE when adding different noise levels. Additionally, the conditions necessary to attain optimized metric values have been found. At the optimum point, the viscosity, syneresis, L*, a*, b* and total acceptability are 19.70 mPa.s, 11.30%, 97.04, -1.43, 8.13, and 5.00, respectively. Besides, the findings indicate that samples containing 0.8% retentate, 0.4% xanthan, and a 31-day shelf-life exhibit the highest viscosity, while those with 0.6% retentate, 0.4% xanthan, and a 31-day shelf-life show the lowest syneresis. Moreover, samples with 0.7% retentate, 0.2% xanthan, and a 13-day shelf-life demonstrate the highest total acceptability.
    Keywords: Doogh, Fuzzy Theory, Support Vector Regression (SVR), Syneresis, Uncertainty
  • I. Behravan, S.M. Razavi *
    Background and Objectives
    Stock markets have a key role in the economic situation of the countries. Thus one of the major methods of flourishing the economy can be getting people to invest their money in the stock market. For this purpose, reducing the risk of investment can persuade people to trust the market and invest. Hence, Productive tools for predicting the future of the stock market have an undeniable effect on investors and traders’ profit.
    Methods
    In this research, a two-stage method has been introduced to predict the next week's index value of the market, and the Tehran Stock Exchange Market has been selected as a case study. In the first stage of the proposed method, a novel clustering method has been used to divide the data points of the training dataset into different groups and in the second phase for each cluster’s data, a hybrid regression method (HHO-SVR) has been trained to detect the patterns hidden in each group. For unknown samples, after determining their cluster, the corresponding trained regression model estimates the target value. In the hybrid regression method, HHO is hired to select the best feature subset and also to tune the parameters of SVR.
    Results
    The experimental results show the high accuracy of the proposed method in predicting the market index value of the next week. Also, the comparisons made with other metaheuristics indicate the superiority of HHO over other metaheuristics in solving such a hard and complex optimization problem. Using the historical information of the last 20 days, our method has achieved 99% accuracy in predicting the market index of the next 7 days while PSO, MVO, GSA, IPO, linear regression and fine-tuned SVR has achieved 67%, 98%, 38%, 4%, 5.6% and 98 % accuracy respectively.
    Conclusion
    in this research we have tried to forecast the market index of the next m (from 1 to 7) days using the historical data of the past n (from 10 to 100) days. The experiments showed that increasing the number of days (n), used to create the dataset, will not necessarily improve the performance of the method.
    Keywords: Tehran Stock Market, Harris Hawks Optimization (HHO), Support Vector Regression (SVR), APSO-Clustering, Metaheuristics
  • علی اکبر عبدوس *
    تجدید ساختار در سیستم های قدرت سبب شده است که پیش بینی قیمت انرژی الکتریکی یکی از چالش های مهم در پیش روی شرکت کنندگان بازار برق باشد. پیش بینی دقیق قیمت انرژی الکتریکی می تواند به تولیدکنندگان و مصرف کنندگان کمک نماید تا تصمیم گیری بهتری به منظور افزایش سود خود داشته باشند. در این مقاله با استفاده از اطلاعات مربوط به قیمت و میزان مصرف انرژی در روزهای گذشته، قیمت انرژی الکتریکی برای 24 ساعت آینده پیش بینی می شود. الگوریتم هوشمند پیشنهادی از طریق سه مرحله مهم تحقق می یابد: 1- مرحله پیش پردازش، 2- مرحله انتخاب ویژگی و 3- مرحله پیش بینی. در ابتدا، سیگنال های قیمت مربوط به روزهای گذشته با استفاده از تبدیل موجک تجربی به مودهای مختلفی تجزیه می گردد. سپس در مرحله دوم، روش انتخاب ویژگی مبتنی بر اطلاعات متقابل به منظور بهبود عملکرد ماشین یادگیری بر روی داده های ورودی اعمال می گردد. در مرحله سوم، به منظور پیش بینی قیمت انرژی در ساعات روز پیشرو، رگرسیون بردار پشتیبان با استفاده از ویژگی های برتر انتخاب شده، آموزش داده می شود. عملکرد الگوریتم ارائه شده با استفاده از داده های واقعی مربوط به دو بازار برق (Pennsylvania New-Jersey Maryland (PJM و (Operador del Mercado Ibérico de Energía-Polo Español (OMEL مورد ارزیابی قرار می گیرد.
    کلید واژگان: پیش بینی قیمت، تبدیل موجک تجربی، رگرسیون بردار پشتیبان، انتخاب ویژگی، اطلاعات متقابل
    A. A. Abdoos *
    Restructuring in power systems has caused electricity price forecasting became one of the most important challenges facing electricity market participants. The precise electricity price forecasting helps both consumers and producers to make better decision in order to maximize their benefit. In this paper, the historical data of electricity price and energy consumption are utilized for prediction of electricity price for the next 24 hours. The proposed intelligent algorithm is realized through three main steps: 1- preprocessing step, 2- feature selection and 3- forecasting step. At first, the price signal is decomposed to different modes by using Empirical Wavelet Transform (EWT). Afterward, in the second step, the feature selection method based on mutual information is applied on input data to improve the performance of forecasting engine. In the third step, for day-ahead hourly electricity price forecasting, the Support Vector Regression (SVR) is trained by selected features. The performance of the proposed algorithm is evaluated using real data of two electricity markets i.e. Pennsylvania New-Jersey Maryland (PJM) and Operador del Mercado Ibérico de Energía-Polo Español (OMIE).
    Keywords: Price forecasting, empirical wavelet transform (EWT), support vector regression (SVR), feature selection, mutual information
  • عباسعلی انصاری نژاد *، مهدی شهباریان

    هدف این پژوهش توصیف یک مدل جدید به نام ترکیب سیستم استنتاج نرو فازی تطبیقی و الگوریتم بهینه سازی ازدحام ذرات برای پیش بینی خوردگی کربن استیل تحت محیط های دریایی متفاوت میباشد. دیتاست استفاده شده برای این پژوهش شامل 5 پارامتر بنام های دما، اکسیژن حل شده، میزان شوری، pH، و پتانسیل اکسایش کاهش به عنوان متغیرهای ورودی سیستم و نرخ خوردگی بعنوان متغیر خروجی میباشد. در مدل هیبریدی، الگوریتم بهینه سازی ازدحام ذرات برای پیدا کردن پارامترهای بهینه سیستم استنتاج نرو فازی تطبیقی بکار گرفته شد تا قدرت عمومی سازی مدل را بهبود ببخشد. میزان کارایی مدل هیبریدی نسبت به نتایج ازمایشی با دو مدل بنام های ترکیب سیستم استنتاج نرو فازی تطبیقی- الگوریتم ژنتیک و مدل ماشین بردار رگرسیون مقایسه شدند. نتایج نشان داد که مدل پیشنهادی خطاهای پیش بینی کمتری نسبت به دو مدل دیگر دارد. در واقع مدل پیشنهادی یک مدل کاربردی و مناسب و قابل اعتماد برای پیش بینی خوردگی کربن استیل در محیط های دریایی متفاوت فراهم می اورد.

    کلید واژگان: پیش بینی خوردگی، سیستم استنتاج نرو فازی تطبیقی، الگوریتم بهینه سازی ازدحام ذرات، ماشین بردار رگرسیون، کربن استیل
    Abasali Ansarinezhad*, Mehdi Shahbazian

    This research aims to describe a novel model, namely Hybrid Adaptive-Neuro Fuzzy Inference System-Particle Swarm Optimization (ANFIS-PSO), for predicting corrosion rate of 3C steel considering different marine environment factors. In the present research, five parameters (temperature, dissolved oxygen, salinity, pH, and oxidation–reduction potential) were used as input variables, with corrosion rate being the only output variable. In the proposed hybrid ANFIS-PSO model, the PSO served as a tool to automatically search for and update optimal parameters for the ANFIS, so as to improve generalizability of the model. Eeffectiveness of the hybrid model was then compared those to two other models, namely Adaptive-Neuro Fuzzy Inference System–Genetic Algorithm (ANFIS-GA) and Support Vector Regression (SVR) models, by evaluating their results against the same experimental data. The results showed that the proposed hybrid model tends to produce a lower prediction error than those of ANFIS-GA and SVR with the same training and testing datasets. Indeed, the hybrid ANFIS-PSO model provides engineers with an applicable and reliable tool to conduct real-time corrosion prediction of 3C steel considering different marine environment factors.

    Keywords: corrosion prediction, Adaptive Neuro-Fuzzy Inference System (ANFIS), Particle Swarm Optimization (PSO), Support Vector Regression (SVR), steel
  • Sh. Sahraei, S. Zare Andalani, M. Zakermoshfegh, B. Nikeghbal Sisakht, N. Talebbeydokhti, H. Moradkhani
    Prediction of river flow is one of the main issues in the field of water resources management. Because of the complexity of the rainfall-runoff process, data-driven methods have gained increased importance. In the current study, two newly developed models called Least Square Support Vector Regression (LSSVR) and Regression Tree (RT) are used. The LSSVR model is based on the constrained optimization method and applies structural risk minimization in order to yield a general optimized result. Also in the RT, data movement is based on laws discovered in the tree. Both models have been applied to the data in the Kashkan watershed. Variables include (a) recorded precipitation values in the Kashkan watershed stations, and (b) outlet discharge values of one and two previous days. Present discharge is considered as output of the two models. Following that, a sensitivity analysis has been carried out on the input features and less important features has been diminished so that both models have provided better prediction on the data. The final results of both models have been compared. It was found that the LSSVR model has better performance. Finally, the results present these models as a suitable models in river flow forecasting.
    Keywords: Streamflow forecast, artificial intelligence, support vector regression (SVR), Regression tree (RT), Kashkan watershed
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال