whale optimization algorithm
در نشریات گروه برق-
حسگرهای اینترنت اشیا و شبکه های حسگر بی سیم برای ارائه اطلاعات، مانند اطلاعات جاده، نیاز به مکان یابی دقیق دارند. نصب مکان یاب بر روی تمامی گره ها و سنسورها بسیار پرهزینه است و به همین دلیل مکان یابی غیرمستقیم انجام می شود. یکی از روش های مکان یابی کم هزینه، الگوریتم DVHop است. به دلیل سادگی الگوریتم DVHop، زمان اجرای آن زیاد نیست. به همین دلیل مصرف انرژی زیادی را مصرف نمی کند و یک الگوریتم کم هزینه محسوب می شود. یکی از چالش های روش DVHop خطای قابل توجه آن در مکان یابی است. برای حل این مشکل، در مقاله حاضر، یک سیستم مکان یاب هوشمند با استفاده از الگوریتم بهبود یافته DVHop و الگوریتم بهینه سازی وال برای تخمین موقعیت اشیا و حسگرها ارائه شده است. روش پیشنهادی دارای سه مرحله اصلی برای مکان یابی هوشمند است. آزمایش ها نشان داد که روش پیشنهادی نسبت به الگوریتم های PSO، WOA، GWO و HHO خطای مکان یابی کمتری دارد و به دلیل انحراف استاندارد کمتر در بومی سازی خطا، از پایداری بالایی برخوردار است. در مقایسه با DVHop، PSODVHop، GSODVHop و DEIDVHop، روش پیشنهادی خطاها را به ترتیب 1.73، 1.60، 1.28 و 1.13 برابر کاهش می دهد.
کلید واژگان: اینترنت اشیاء، الگوریتم Dvhop، مکان یابی، الگوریتم بهینه سازی والSensors of the Internet of Things and wireless sensor networks need accurate localization to provide information, such as road information. Installing a locator on all the nodes and sensors is very expensive, and, for this reason, indirect localization is done. One of the low-cost localization methods is DVHop algorithm. Due to the simplicity of DVHop algorithm, its execution time is not long; for this reason, it does not impose much energy consumption, and it is considered a low-cost algorithm. One of the challenges of the DVHop method is its significant error in localization. To solve this problem, in the present paper, a smart locator system is presented using the DVHop algorithm and improved Whale optimization algorithm to estimate the location of objects and sensors. The proposed method has three main steps for smart localization. Experiments showed that the proposed method has less localization error than PSO, WOA, GWO, and HHO algorithms and has high stability due to less standard deviation in localizing the error. Compared to the DVHop, PSODVHop, GSODVHop, and DEIDVHop, the proposed method reduces errors by 1.73, 1.60, 1.28, and 1.13 times, respectively.
Keywords: Internet Of Things, Dvhop Algorithm, Localization, Whale Optimization Algorithm -
با افزایش تعداد منابع تولید پراکنده محلی و افزایش ساختمان های هوشمند در ریزشبکه های امروزی، بار محاسباتی و داده های مبادله شده بین واحد ها افزایش یافته است؛ از این رو، انجام محاسبات در محل و ارسال اطلاعات نهایی به شبکه بالادست برای تصمیم گیری و برنامه ریزی امری ضروری است. در این مقاله، روشی بر مبنای ابر مه ارائه شده است که حجم و زمان محاسبات را برای مدیریت انرژی ساختمان های هوشمند در ریزشبکه کاهش می دهد. سیستم پیشنهادی دارای چندین ساختمان هوشمند است که هر ساختمان هوشمند دارای بارهای ثابت و قابل تغییر، سیستم ذخیره ساز انرژی و سیستم فتوولتاییک است. در مدیریت انرژی ساختمان های هوشمند، دو هدف هزینه و نرخ پیک به میانگین در مسئله چندهدفه ارائه شده است. هر ساختمان هوشمند قابلیت خرید و فروش انرژی با شبکه بالادست را دارد. الگوریتم بهینه سازی وال برای حل مسئله بهینه سازی پیشنهادی و کاهش هم زمان هزینه و نرخ پیک به میانگین استفاده شده است. با انجام محاسبات ابر مه و حل مسئله بهینه-سازی هر ساختمان هوشمند به صورت محلی، حجم محاسبات و زمان محاسبات نسبت به حالت بدون ساختار ابر مه، از 46/4665 ثانیه به 52/48 ثانیه کاهش یافته است؛ بنابراین، محاسبات لبه سبب کاهش حجم و زمان محاسبات در مدیریت انرژی چندین ساختمان هوشمند شده است که در پی آن، برنامه ریزی واحد ها به صورت محلی انجام می شود.
کلید واژگان: الگوریتم بهینه سازی وال، ریزشبکه، ساختمان هوشمند، محاسبات ابر مه، مدیریت انرژیWith the increase in the number of locally distributed generation resources and the increase of smart buildings in today's microgrids, the computational volume and data exchanged between units have increased. Therefore, it is necessary to perform on-site calculations and send the final information to the upstream layer for decision-making and planning. This paper presents a cloud-fog computing structure that reduces the computational burden and time of calculations for energy management of smart buildings in the smart microgrids. The proposed system has several smart buildings, each with fixed and shiftable loads, an energy storage system, and a photovoltaic system. In the proposed energy management of smart buildings, the cost and peak-to-average ratio are presented as objective functions in a multi-objective problem. Every smart building can buy and sell energy with the upstream network. Whale optimization algorithm has been used to solve the optimization problem and the cost and peak-average ratio have been reduced and optimized simultaneously. By implementing cloud-fog computing and solving the optimization problem of each smart building locally, the computational burden and computing time have been reduced from 465.46 seconds to 48.52 seconds compared to the case without cloud-fog structure. Therefore, cloud-fog computing has reduced the computational burden and the time of calculations in the proposed energy management system of each smart building, after which the planning of the units is done locally.
Keywords: Whale Optimization Algorithm, Microgrid, Smart Building, Cloud-Fog Computing, Energy Management -
Energy Efficient Clustering in IOT-Based Wireless Sensor Networks using Whale Optimization AlgorithmOne of the most critical challenges of wireless sensor networks is the limited energy of the nodes, which has tried to manage energy consumption in these networks by using more accurate clustering. So far, many methods have been proposed to increase the accuracy of clustering, which reduces the energy consumption of nodes and thus increases network throughput. In this paper, we propose a method for clustering wireless sensor networks using the whale optimization algorithm, which results in increased throughput in these networks. Although much work has been done in this area in terms of energy, some do not have good throughput. Therefore, in this paper, a clustering method based on the whale optimization algorithm is proposed. Features of this algorithm include easy implementation, providing high- quality solutions, quick convergence, and the ability to escape from local minima. Also, in terms of clustering, in addition to paying attention to energy consumption, has appropriate throughput. In the proposed method, the Euclidean distance is used to assign data to the cluster and determine the cluster centers by the whale optimization algorithm. In other words, concentrated clusters are created. Then, according to the two remaining energy parameters and the distance of the nodes to the centers of the cluster, two clusters are selected. To evaluate the research, we have used MATLAB software and compared the proposed method with one of the latest works. The results show an improvement in throughput and comparable in terms of energyKeywords: Clustering, Energy Consumption, throughput, Wireless Sensor Networks, whale optimization algorithm
-
Journal of Electrical and Computer Engineering Innovations, Volume:10 Issue: 2, Summer-Autumn 2022, PP 351 -362Background and ObjectivesAs cities are developing and the population increases significantly, one of the most important challenges for city managers is the urban transportation system. An Intelligent Transportation System (ITS) uses information, communication, and control techniques to assist the transportation system. The ITS includes a large number of traffic sensors that collect high volumes of data to provide information to support and improve traffic management operations. Due to the high traffic volume, the classic methods of traffic control are unable to satisfy the requirements of the variable, and the dynamic nature of traffic. Accordingly, Artificial Intelligence and the Internet of Things meet this demand as a decentralized solution.MethodsThis paper presents an optimal method to find the best route and compare it with the previous methods. The proposed method has three phases. First, the area should be clustered under servicing and, second, the requests will be predicted using the time series neural network. then, the Whale Optimization Algorithm (WOA) will be run to select the best route.ResultsTo evaluate the parameters, different scenarios were designed and implemented. The simulation results show that the service time parameter of the proposed method is improved by about 18% and 40% in comparison with the Grey Wolf Optimizer (GWO) and Random Movement methods. Also, the difference between this parameter in the two methods of Harris Hawks Optimizer (HHO) and WOA is about 5% and the HHO has performed better.ConclusionThe interaction of AI and IoT can lead to solutions to improve ITS and to increase client satisfaction. We use WOA to improve time servicing and throughput. The Simulation results show that this method can be increase satisfaction for clients.Keywords: Grey Wolf Optimization, Whale optimization algorithm, Internet of Things, Intelligent Transportation System
-
تخمین نرخ نفوذ (ROP) در یک فرایند حفاری از آن جهت که سبب انتخاب بهینه پارامترهای حفاری و کاهش هزینه های مصرفی عملیات میشود بسیار حایز اهمیت است. هدف اصلی از این مقاله، مدلسازی و تخمین ROP با استفاده از شبکه های عصبی پرسپترون چند لایه بهینه شده با الگوریتم وال (WOA-MLPNN)، شبکه های عصبی بهینه شده با الگوریتم مورچگان (ACO-MLPNN)، شبکه های عصبی پس انتشار خطا (BP-MLPNN) و دو مدل ریاضی شامل مدل بورگوان و یانگ (BYM) و مدل بینگهام میباشد. داده های مورد نیاز برای توسعه مدلها، از واحد نمودار گیری گل و گزارشات پایانی سه چاه حفاری شده در یک میدان نفتی واقع در جنوب غربی ایران جمع اوری شده است، که نخست به منظور حذف نقاط خارج از محدوده و کاهش نویز پیش پردازش شدند. در ادامه، از اطلاعات مقطع 12.25 اینچ دو حلقه چاه که شامل یک توالی مشابه از سازند های حفاری شده میباشند به منظور آموزش و آزمایش مدلها استفاده گردید و سپس مدلهای تولید شده، توسط اطلاعات چاه سوم مورد اعتبار سنجی قرار گرفتند. در پایان، عملکرد مدلها بوسیله شاخص های اماری و ابزار های گرافیکی مختلفی مورد ارزیابی قرار گرفت. نتایج این مطالعه نشان داد که روش های آموزش ماشین نسبت به مدلهای ریاضی مرسوم بسیار دقیقتر میباشند. همچنین، بررسی های بیشتر ثابت کرد که مدل WOA-MLPNN با مقادیر AAPRE برابر 3.19، 5.48 و 9.31 به ترتیب برای سه بخش آموزش، آزمایش و اعتبار سنجی بالاترین عملکرد را نسبت به سایر مدله ها دارا میباشد.
کلید واژگان: نرخ نفوذ حفاری، مدل بورگوان و یانگ، مدل بینگهام، الگوریتم وال، الگوریتم کلونی مورچگان، شبکه عصبی پرسپترون چند لایهRate of penetration (ROP) estimation in a drilling process is very important because it leads to the optimal selection of drilling parameters and reduction of the operating costs. The main purpose of this paper is to modeling and estimating ROP using optimized multilayer perceptron neural network with whale optimization algorithm (WOA-MLPNN), optimized multilayer perceptron neural network with ant colony optimization algorithm (ACO-MLPNN), back propagation multilayer perceptron neural network (BP-MLPNN) and two mathematical models including Bourgoyne and Young model (BYM) and Bingham model. The data required for development of the models were collected from the mud logging unit and the final reports of three drilled wells in an oil field located in southwestern Iran, which were first pre-processed to remove outliers and reduce noise. In the following, 12.25” hole-section information of two wells containing a similar sequence of drilled formations was used to train and test the models, and then the generated models were validated by the third well information. In the end, the performance of models was evaluated by statistical indicators and various graphical tools. The results of this study showed that the machine learning methods are much more accurate than conventional mathematical models. Also, more detailed studies showed that the WOA-MLPNN model with AAPRE values of 3.19, 5.48 and 9.31 for the three sections of training, testing and validation, respectively, has the highest performance compared to other models.
Keywords: Rate of penetration, Bourgoyne, Young model, Bingham model, whale optimization algorithm, Ant colony optimization algorithm, Multilayer perceptron neural network -
Regarding the significance of energy distribution smart grids and the operation of smart grids, this paper presents a novel method to reduce power loss in these grids. The proposed method determines the injected reactive power and tap of an on-load tap changer (OLTC) optimally using an optimization algorithm. Loss reduction, voltage profile improvement, costs caused by reactive power injection by the capacitor in the grid, conservation voltage reduction (CVR), and transformer loss are considered as objective functions. The new Whale Optimization Algorithm (WOA) is employed as the Volt/VAR Optimization (VVO) algorithm in this paper. The algorithm inspired by the hunting behavior of humpback whales has a high convergence speed, fewer parameters to adjust, and a balance between exploitation and exploration phases. In addition to the above advantages, the WOA has accurate convergence and an effective variety of solutions. The suggested method is applied to the standard IEEE 33-bus system. According to the optimization results, the operating conditions of the distribution smart grid has been improved and the loss has been significantly reduced. Furthermore, the WOA provides better performance in solving the given optimization problem.
Keywords: smart grid, Whale Optimization Algorithm, energy losses, voltage-var optimization, Capacitor placement -
International Journal of Industrial Electronics, Control and Optimization, Volume:3 Issue: 4, Summer 2020, PP 393 -406In this paper, a fault location approach is presented by using Whale Optimization Algorithm (WOA) strategy in two terminal transmission feeder. Also, Grey wolf Optimization (GWO) method is discussed. From both ends, affording the preparatory data for proposed strategies voltages and currents from both ends are measured. Several types of faults and simulations are considered in this paper and the objective function identifies the fault location with a high accuracy, correctness in a short time. Meanwhile, based on distributed model the line, the fault location is defined and since the optimization algorithm do not utilize compressed model of the line, the accuracy of the calculation is high. WOA based optimization method results in a notable reduction in the computational time. Accurate and timely location of the source of the fault greatly facilitates the job of the repair crew. This is the benefit of the proposed technique. Almost in all the cases, the accuracy of proposed procedure is very high and the error is kept below 1%.Keywords: Bergeron model in time domain, Dispersed model of the line, Fault location technique, Grey wolf optimization algorithm, Whale optimization algorithm
-
To realize the self-healing concept of smart grids, an accurate and reliable fault locator is a prerequisite. This paper presents a new fault location method for active power distribution networks which is based on measured voltage sag and use of whale optimization algorithm (WOA). The fault induced voltage sag depends on the fault location and resistance. Therefore, the fault location can be found by investigation of voltage sags recorded throughout the distribution network. However, this approach requires a considerable effort to check all possible fault location and resistance values to find the correct solution. In this paper, an improved version of the WOA is proposed to find the fault location as an optimization problem. This optimization technique employs a number of agents (whales) to search for a bunch of fish in the optimal position, i.e. the fault location and its resistance. The method is applicable to different distribution network configurations. The accuracy of the method is verified by simulation tests on a distribution feeder and comparative analysis with two other deterministic methods reported in the literature. The simulation results indicate that the proposed optimized method gives more accurate and reliable results.</span></span></span></div>
Keywords: Fault Location, Optimization, Self-Healing, Smart Grids, Whale Optimization Algorithm
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.