chance constraint programming
در نشریات گروه صنایع-
یکی از رایج ترین و موفق ترین رویکردها برای مدیریت یکپارچه زنجیره تامین سیاست موجودی مدیریت شده توسط فروشنده است. در این سیاست، یک فروشنده کنترل تصمیمات موجودی را برای تعدادی از خرده فروشان در دست می گیرد. در این تحقیق سعی بر آن است تا برنامه ریزی برای عرضه، تولید و توزیع با رویکردی یکپارچه برای کاهش ضایعات و کمبود محصولات فاسدشدنی به گونه ای مورد بررسی قرار گیرد که هزینه های فروشنده و خرده فروشان در زنجیره تامین با در نظر گرفتن سیاست موجودی مدیریت شده توسط فروشنده به کمترین حد خود برسد. از آنجایی که کاهش هزینه های ضایعات، کمبود، تولید و ذخیره سازی کالاهای فاسدشدنی از اهمیت بالایی برخوردار است، در این تحقیق به طور همزمان در مدل پیشنهادی بررسی می شوند. در این پژوهش، چون تقاضا وابسته به کیفیت محصول است و اطلاعات کیفیت برای خرده فروش قبل از تولید در دسترس نیست، تقاضا تصادفی و از توزیع مشخصی پیروی می کند. از آنجایی که برنامه ریزی محدودیت شانسی به عنوان ابزاری قوی برای سامانه های تصمیم گیری تصادفی معرفی شده است، در این مطالعه مسیله مورد نظر با استفاده از برنامه ریزی محدودیت شانسی مدل شده است. در نهایت، کارایی روش ارایه شده از طریق مطالعه موردی زنجیره تامین مواد غذایی تایید شد. نتایج نشان داد که کاهش ضریب اطمینان در محدودیت های شانسی می تواند بسیاری از هزینه ها را در سازمان کاهش دهد. این تحقیق می تواند به مدیران زمانی که کاهش هزینه ضایعات و کمبود و تامین تقاضا از اهمیت بالایی برخوردار است کمک شایانی بکند.کلید واژگان: مدیریت موجودی توسط فروشنده، برنامه ریزی محدودیت شانسی، زنجیره تامین، محصولات فاسدشدنیOne of the most common and successful approaches to integrated supply chain management is vendor-managed Inventory. In this policy, a vendor takes control of inventory decisions for a number of retailers. This research aims to examine planning for supply, production, and distribution with an integrated approach to reduce waste and shortages of perishable products in a manner that minimizes costs for both the vendor and retailers in the supply chain, considering the vendor-managed Inventory. Since reducing the costs of waste, shortages, production, and storage of perishable goods is of paramount importance, this research simultaneously investigates the proposed model. In this study, as demand depends on product quality and quality information is not available to the retailer before production, demand follows a random and specific distribution. Since chance constraint programming has been introduced as a powerful tool for decision-making systems, in this study, the problem is modeled using this technique. Ultimately, the effectiveness of the proposed method was validated through a case study of a food supply chain. The results indicated that reducing confidence intervals in stochastic constraints could significantly reduce costs within the organization. This research can provide valuable assistance to managers when reducing waste, shortages, and demand fulfillment is of utmost importance.Keywords: vendor-managed Inventory, chance constraint programming, Supply Chain, perishable products
-
Journal of Industrial Engineering and Management Studies, Volume:10 Issue: 2, Summer-Autumn 2023, PP 42 -58
In today's era, organizations recognize the challenges of meeting the evolving needs and preferences of customers. Simply improving products and individual performance is insufficient to satisfy customer requirements. Instead, organizations have embraced a collaborative strategy, utilized efficient supply chains and leveraged each other's expertise and resources to enhance customer satisfaction. This approach has been made possible by technological advancements. The literature review identifies two research gaps: insufficient consideration of inherent uncertainty in construction projects and inade-quate attention to the multi-objective and multimodal nature of construction project models. To address uncertainties in construction projects, this study employed the Chance-Constrained Programming approach. Uncertainty-related parame-ters were identified and integrated into an optimization model. The primary objective of this study is to minimize project implementation delays. To achieve this, we employ exact algorithms for small and medium-scale problems and utilize NSGAII for large-scale scenarios. Our research emphasizes the critical importance of efficient project timing, cost optimi-zation, and proactive delay management for achieving successful project outcomes. The study reveals critical insights into the impact of resource allocation on the first objective function. The findings show 20% increase in resources for the first activity (i) raises the objective function to 310 units, while a 30% reduction in activity i's completion time lowers it to 188 units. These findings offer valuable benchmarks for decision-making and project optimization. Managers can use these insights to enhance decision-making, optimize resource allocation, and ensure timely project completion while maintaining quality and cost control.
Keywords: chance constraint programming, minimizing delay, stochastic uncertainty, Resource Allocation -
This paper presents a novel multi-objective location arc-routing model in order to locate disposal facilities and to design optimal routes of residential waste taking into consideration many complicated real constraints such as a heterogeneous fleet of vehicles, time windows for customers, disposal facilities and the depot, capacities for vehicles and facilities. The first objective is the minimization of transportation costs, including service costs and fuel costs of vehicles. The second one minimizes total number of utilized vehicles. And finally, the third objective function is considered for minimizing total number of established disposal centers. Moreover, to come closer to reality the service time, amount of demands, capacities and cost parameters are considered as fuzzy ones. To solve the proposed model, a credibility-based fuzzy mathematical model and its interactive solution method with three recent approaches, are used and the results are compared with each other.
Keywords: Waste collection problem, multi-objective optimization, time windows, interactive fuzzy programming, chance constraint programming -
International Journal of Industrial Engineering and Productional Research, Volume:29 Issue: 4, Dec 2018, PP 471 -482Development of every society is incumbent upon energy sector’s technological and economic effectiveness. The electricity industry is a growing and needs to have a better performance to effectively cover the demand. The industry requires a balance between cost and efficiency through careful design and planning. In this paper, a two-stage stochastic programming model is presented for the design of electricity supply chain networks. The proposed network consists of power stations, transmission lines, substations, and demand points. While minimizing costs and maximizing effectiveness of the grid, this paper seeks to determine time and location of establishing new facilities as well as capacity planning for facilities. We use chance constraint method to satisfy the uncertain demand with high probability. The proposed model is validated by a case study on Southern Khorasan Province’s power grid network, the computational results show that the reliability rate is a crucial factor which greatly effects costs and demand coverage.Keywords: Electricity supply chain, capacity planning, location, two stage stochastic programming, chance constraint programming
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.