به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

combinatorial optimization

در نشریات گروه صنایع
تکرار جستجوی کلیدواژه combinatorial optimization در نشریات گروه فنی و مهندسی
تکرار جستجوی کلیدواژه combinatorial optimization در مقالات مجلات علمی
  • Saeed Saemi, Alireza Rashidi Komijan *, Reza Tavakkoli-Moghaddam, Mohammad Fallah
    A Crew Scheduling Problem (CSP) is a highly complex airline optimization problem, which includes two sub-problems, namely Crew Rostering Problem (CRP) and Crew Pairing Problem (CPP). Solving these problems sequentially may not lead to an optimal solution. To overcome this shortcoming, the present study introduces a new bi-objective formulation for the integrating CPP and CRP by considering the reserve crew with the objectives of crew cost minimization and crew reserve maximization. The integrated model generates and assigns pairings to a group of crew members by taking into account the rules and regulations about employing the manpower (i.e., crew member) and crew reservation in order to reduce flight delays or even cancellations due to the unexpected disruptions. An Ant Colony Optimization (ACO) algorithm is used to solve the considered problem. To justify the efficiency of this proposed algorithm in solving the presented model, different test problems are generated and solved by ACO and GAMS. The computational results indicate that solutions obtained by the proposed ACO algorithm have a 2.57% gap with the optimal solutions reported by GAMS as optimization software on average and significantly less CPU time for small-sized problems. Also, ACO obtains better solutions in significantly shorter CPU time for large-sized problems. The results indicate the efficient performance of the proposed algorithm in solving the given problems.
    Keywords: Crew Planning, Multiple objective programming, Combinatorial optimization, Air transport, Metaheuristics
  • Jon Henly Santillan *, Samantha Tapucar, Cinmayii Manliguez, Vicente Calag

    For this paper, we explored the implementation of the cuckoo search algorithm applied to the capacitated vehicle routing problem. The cuckoo search algorithm was implemented with Lévy flights with the 2-opt and double-bridge operations, and with 500 iterations for each run. The algorithm was tested on the problem instances from the Augerat benchmark dataset. The algorithm did not perform well on the problem instances, save for a select few on which the algorithm achieved the close to near-optimal result and one on which the algorithm achieved the optimal result. Increasing the number of iterations for each run of the algorithm on the two large-scale problem instances led to obtaining solutions closer to the optimal solution compared to the ones obtained with fewer number iterations. This gives an idea that the larger the problem instance becomes, the slower the algorithm converges to the optimal solution. Several other factors may also have contributed to the overall performance of the algorithm. Regardless of its performance, the algorithm was able to obtain routes that satisfied the constraints of the capacitated vehicle routing problem. The potential of the cuckoo search algorithm in solving combinatorial problems is demonstrated in this study in which the performance of the algorithm on routing problems was explored.

    Keywords: Capacitated vehicle routing problem, Combinatorial optimization, Cuckoo search, Le´vy flights
  • Mohammad Saied Fallah Niasara*, Luca Talarico, Mehdi Sajadifar, Amir Hosein Tayebi

    The school bus routing problem (SBRP) represents a variant of the well-known vehicle routing problem. The main goal of this study is to pick up students allocated to some bus stops and generate routes, including the selected stops, in order to carry students to school. In this paper, we have proposed a simple but effective metaheuristic approach that employs two features: first, it utilizes large neighborhood structures for a deeper exploration of the search space; second, the proposed heuristic executes an efficient transition between the feasible and infeasible portions of the search space. Exploration of the infeasible area is controlled by a dynamic penalty function to convert the unfeasible solution into a feasible one. Two metaheuristics, called N-ILS (a variant of the Nearest Neighbourhood with Iterated Local Search algorithm) and I-ILS (a variant of Insertion with Iterated Local Search algorithm) are proposed to solve SBRP. Our experimental procedure is based on the two data sets. The results show that N-ILS is able to obtain better solutions in shorter computing times. Additionally, N-ILS appears to be very competitive in comparison with the best existing metaheuristics suggested for SBRP

    Keywords: School Bus Routing Problem, Combinatorial Optimization, Iterated Local Search Algorithm, Strategic Oscillation
  • Mohammad Hassan Sebt*, Mohammad Reza Afshar, Yagub Alipouri
    In this paper, a new genetic algorithm (GA) is presented for solving the multi-mode resource-constrained project scheduling problem (MRCPSP) with minimization of project makespan as the objective subject to resource and precedence constraints. A random key and the related mode list (ML) representation scheme are used as encoding schemes and the multi-mode serial schedule generation scheme (MSSGS) is considered as the decoding procedure. In this paper, a simple, efficient fitness function is proposed which has better performance compared to the other fitness functions in the literature. Defining a new mutation operator for ML is the other contribution of the current study. Comparing the results of the proposed GA with other approaches using the well-known benchmark sets in PSPLIB validates the effectiveness of the proposed algorithm to solve the MRCPSP.
    Keywords: Combinatorial optimization, Multi-mode project scheduling, Resource constraints, Genetic algorithm, Random key representation
  • علیرضا محمدی شاد، پرویز فتاحی
    مسئله مکان یابی- مسیریابی وسیله نقلیه ظرفیت دار1 (CLRP)‎، یکی از حوزه های جدید تحقیقاتی در مدیریت پخش است. این موضوع، دو مسئله مشکل مکان یابی تسهیلات و مسیریابی وسایل نقلیه را با یکدیگر ترکیب می کند. هدف از CLRP گشودن مجموعه ای از دپو ها، تخصیص مشتری ها به دپو های احداث شده و سپس طراحی تورهای وسیله نقلیه برای کمینه کردن هزینه کل است. محدودیت پنجره های زمانی کاربردهای زیادی در دنیای واقعی دارد، با این وجود در CLRP اهمیت کمی به آن داده شده است. این مقاله، مسئله مکان یابی- مسیریابی وسیله نقلیه ظرفیت دار را با پنجره های زمانی سخت2 (CLRPHTW)‎ در نظر می گیرد. در این مقاله، ابتدا یک مدل برنامه ریزی خطی عدد صحیح مختلط برای CLRPHTW ارائه شده و سپس روشی فراابتکاری بر مبنای الگوریتم جستجوی همسایگی متغیر برای حل این مسئله پیشنهاد می شود. برای ارزیابی عملکرد روش پیشنهادی، این چارچوب با استفاده از یک مجموعه مثال های آزمایش مورد بررسی قرار می گیرد. آزمایش های محاسباتی کارآیی روش پیشنهادی را نشان می دهند.
    کلید واژگان: جستجوی همسایگی متغیر، مکان یابی، پنجره زمانی، بهینه سازی ترکیب، مسیریابی وسیله نقلیه، روش فرا ابتکاری
    A.R. Mohammadishad, P. Fattahi
    The capacitated location-routing problem (CLRP) is a new research area in logistics and distribution management. This problem combines two difficult problems: the facility location problem (FLP) and vehicle routing problem (VRP). The goal of the CLRP is to open a subset of depots, assign the customers into open facilities, and then design vehicle tours in order to minimize the total cost. The time windows constraint has numerous real-life applications, however there are little attention to this fact in the CLRP. This paper, considers the CLRP with hard time windows (CLRPHTW). At first, a mixed integer linear programming (MILP) formulations for the CLRPHTW is presented, then a meta-heuristic approach based on variable neighborhood search for solving the CLRPHTW is proposed. In order to evaluate the performance of the suggested method, this framework is tested on a set of instances. The experimental results show the effectiveness of the proposed approach.
    Keywords: Combinatorial optimization, Meta, heuristic approach, Variable neighborhood search, Time window, Location, routing problem
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال