جستجوی مقالات مرتبط با کلیدواژه
تکرار جستجوی کلیدواژه support vector clustering در نشریات گروه فنی و مهندسی
support vector clustering
در نشریات گروه صنایع
تکرار جستجوی کلیدواژه support vector clustering در مقالات مجلات علمی
-
This study addresses the Hub Location-Routing Problem (HLRP) in transportation networks, considering the inherent uncertainty in travel times between nodes. We employed a method centered on data-driven robust optimization, utilizing Support Vector Clustering (SVC) to form an uncertainty set grounded in empirical data. The proposed methodology is compared against traditional uncertainty sets, showcasing its superior performance in providing robust solutions. A comprehensive case study on a retail store's transportation network in Tehran is presented, demonstrating significant differences in hub locations, allocations, and vehicle routes between deterministic and robust models. The SVC-based model proves to be particularly effective, yielding substantially improved objective function values compared to polyhedral and box uncertainty sets. The study concludes by highlighting the practical significance of this research and suggesting future directions for advancing transportation network optimization under uncertainty.Keywords: Robust Optimization, Hub Location, Machine Learning, Data-Driven Approach, Support Vector Clustering
-
This study addresses the Hub Location-Routing Problem (HLRP) in transportation networks, considering the inherent uncertainty in travel times between nodes. We employed a method centered on data-driven robust optimization, utilizing Support Vector Clustering (SVC) to form an uncertainty set grounded in empirical data. The proposed methodology is compared against traditional uncertainty sets, showcasing its superior performance in providing robust solutions. A comprehensive case study on a retail store's transportation network in Tehran is presented, demonstrating significant differences in hub locations, allocations, and vehicle routes between deterministic and robust models. The SVC-based model proves to be particularly effective, yielding substantially improved objective function values compared to polyhedral and box uncertainty sets. The study concludes by highlighting the practical significance of this research and suggesting future directions for advancing transportation network optimization under uncertainty.Keywords: robust optimization, Hub Location, Machine Learning, data-driven approach, support vector clustering
نکته
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.