Grasshopper Optimization Algorithm
در نشریات گروه صنایع-
Journal of Industrial Engineering and Management Studies, Volume:9 Issue: 2, Summer-Autumn 2022, PP 113 -128Balancing the production system’s resources like budget, equipment, and workers is one of the most important concerns of production managers. Managers seek to find an optimal way to balance their resources in production systems. By evaluating U-shaped assembly line papers, this investigation adds the literature on U-shaped assembly lines to the simultaneous examination of the balance ergonomic risks of human workers and current costs in the system when government offers tax benefits for using disabled workers. The mentioned outlook was not considered in previous papers. This study proposes a two-objective model to evaluate the effects of considering both robots and human workers in a U-shaped assembly line. The first objective is to minimize the system costs, and the second is to minimize the ergonomic risks. Human workers are divided into normal and disabled. The disabled workers are hired to enable tax benefits from the government. The constraint programming model for small and medium-sized problems and the grasshopper optimization algorithm (GOA) for big problems are developed to dissolve the problem. Numerical results show that two objective functions can also level system costs and ergonomic risks. The sensitivity analysis section analyzes three effective parameters (Production cycle time, Fatigue rate of human workers, and government tax benefit). It is shown that production cycle time directly affects using a robot or human workers (due to their mean time of speed), fatigue rate determines the allocation of tasks, and tax benefit helps to determine whether using disabled workers or not according objective functions. Also, it should be noticed the efficiency of GOA is shown by a comparison of several examples. Therefore, it is used for big-scale test problems.Keywords: U-shaped assembly line, ergonomic risks, human, robot workers, Constraint Programming, Grasshopper Optimization Algorithm
-
Most humanitarian relief items' investigations try to satisfy demands in disaster areas in an appropriate time and reduce the rate of causality. Time is an essential element in humanitarian relief items; the quietest response time, the more rescued people. Reducing response time with high reliability is the main objective of this research. In our investigation, monitoring the route’s situation after occurrence disaster with drones and motorcycles is planned for collecting information about routes and demand points in the first stage. The collected information is analyzed by the disaster management to determine the probability of each scenario. By evaluating collected data, the route repair groups are sent to increase the route’s reliability. In the final step, the relief items operation allocates the relief items to demand points. All in all, this research tries to present a practical model and real situation to survive more people after occurrence disaster. An exact solver solves the evolutionary model in small and medium scales; the developed model in big scale is solved by Grasshopper Optimization Algorithm (GOA), and then results are evaluated. The evaluation results indicate the positive effect of valid initial information on the humanitarian supply chain’s performance.
Keywords: humanitarian relief supply chain, Monitoring Routes, Repairing groups, Reliability of routes, Grasshopper Optimization Algorithm
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.