به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

artificial bee colony algorithm

در نشریات گروه عمران
تکرار جستجوی کلیدواژه artificial bee colony algorithm در نشریات گروه فنی و مهندسی
  • هادی فتاحی*، فاطمه جیریایی

    پی های شمعی از سازه های مهم در حوزه ی ژیوتکنیک هستند که ممکن است تحت بارهای جانبی بزرگی قرارگیرند. تخمین ظرفیت باربری این گونه شمع ها با استفاده از روش های تجربی، همواره با خطا همراه بوده و نتیجه مدل سازی را از واقعیت دور می سازد. امروزه روش های هوشمند، قابلیت بالایی در امر پیش بینی و تخمین متغیر مجهول از خود نشان داده اند و می توانند جایگزین روش های تجربی و تحلیلی باشند. در این تحقیق سعی شد با ایجاد یک مدل ترکیبی هوشمند به نام رگرسیون بردار ارتباط بهینه شده با الگوریتم فراابتکاری کلونی زنبور عسل (RVR-ABC) به پیش بینی دقیق ظرفیت باربری جانبی شمع ها در خاک های رسی پرداخته شود. در این روش از رگرسیون بردار ارتباط به عنوان مدل پیش بینی کننده و از الگوریتم فراابتکاری کلونی زنبور عسل به منظور بهینه سازی پارامترهای روش رگرسیون بردار ارتباط استفاده شده است. در این مدلسازی داده های به کار گرفته شده، مربوط به یک مجموعه داده آزمایشگاهی ظرفیت باربری جانبی شمع در مقیاس کوچک می باشد. برای ارزیابی دقت مدلسازی از شاخص های مختلف آماری استفاده شد که نهایتا نتایج نشان داد که مدل ترکیبی RVR-ABC برای داده های آزمون با R2=0.975 و RMSE=0.001 ، از توانایی بالایی در پیش بینی ظرفیت باربری جانبی شمع ها برخوردار است. بعلاوه آنالیز حساسیت انجام شده در این مطالعه نشان داد که متغیرهای خروج از مرکز بار و طول مدفون شمع، در مقایسه با سایر پارامترها بااهمیت تر و تاثیرگذارترند.

    کلید واژگان: رگرسیون بردار ارتباط (RVR)، کلونی زنبور عسل (ABC)، ظرفیت باربری جانبی شمع، آنالیز حساسیت
    Hadi Fattahi*, Fateme Jiryaee

    Estimation  of  the  load  carrying  capacity  of  pile  foundation  is  one  of  the  most  sought  after  research  areas  in geotechnical   engineering.   Static   equilibrium   and   other dynamic equations are used to predict  the  axial  load  capacity  of  pile.  The  prediction  of lateral  load  capacity  of  piles,  used  in  tall  and  offshore structures is more complex and requires solution of non-linear differential equations. The elastic analysis adopting Winkler   soil   model is   not suitable for the non-linear soil behavior.  Estimating the load capacity of such piles using experimental methods is always associated with error and makes the modeling result far from reality. Today, intelligent methods have shown a high capability in predicting and estimating unknown variables and can replace experimental and analytical methods. In this research, we tried to accurately predict the lateral load capacity of piles in clay soils by creating an intelligent hybrid model called optimized relevant vector regression with the artificial bee colony algorithm. The relevant vector regression is a probabilistic method based on Bayesian approach. The relevant vector regression does not need to predict the error/margin tradeoff parameter C, which can decrease the time and the kernel function, does not need to satisfy the Mercer condition. For those relevant vector regression advantages compared with the support vector regression approach, relevant vector regression model is successfully applied in regression prediction problems. In this method, relevant vector regression is used as a predictive model and artificial bee colony algorithm is used to optimize the parameters of relevant vector regression method. The artificial bee colony algorithm is a swarm based meta-heuristic algorithm for optimizing numerical problems. It was inspired by the intelligent foraging behavior of honey bees. The algorithm is specifically based on the model for the foraging behavior of honey bee colonies. The model consists of three essential components: employed and unemployed foraging bees, and food sources. The first two components, employed and unemployed foraging bees, search for rich food sources, which is the third component, close to their hive. The model also defines two leading modes of behavior which are necessary for self-organizing and collective intelligence: recruitment of foragers to rich food sources resulting in positive feedback and abandonment of poor sources by foragers causing negative feedback.  In artificial bee colony, a colony of artificial forager bees (agents) search for rich artificial food sources (good solutions for a given problem). To apply artificial bee colony, the considered optimization problem is first converted to the problem of finding the best parameter vector which minimizes an objective function. Then, the artificial bees randomly discover a population of initial solution vectors and then iteratively improve them by employing the strategies: moving towards better solutions by means of a neighbor search mechanism while abandoning poor solutions.In this modeling, the data used are related to a laboratory data set of small-scale pile load capacity. Various statistical indicators were used to evaluate the modeling accuracy. Finally, the results showed that the combined relevant vector regression with the artificial bee colony algorithm for test data with R2 = 0.975 and RMSE = 0.001, has a high ability to predict the lateral load capacity of spark plugs. In addition, the sensitivity analysis performed in this study showed that the variables of eccentricity of load and the length of pile are more important and effective compared to other parameters.

    Keywords: Relevant vector regression, Artificial bee colony algorithm, Lateral load capacity, Sensitivity analysis
  • A. Kaveh*, K. Biabani Hamedani

    In this paper, set theoretical variants of the artificial bee colony (ABC) and water evaporation optmization (WEO) algorithms are proposed. The set theoretical variants are designed based on a set theoretical framework in which the population of candidate solutions is divided into some number of smaller well-arranged sub-populations. The framework aims to improve the compromise between diversification and intensification of the search and makes it possible to design various variants of a P-metaheuristic. In order to verify the stability and robustness of the set theoretical framework, the proposed algorithms are applied to solve three different benchmark structural design optimization problems. The results show that the set theoretical framework improves the performance of the ABC and WEO algorithms, especially in terms of robustness and convergence characteristics.

    Keywords: structural optimization, truss structures, frame structures, population-based metaheuristics, set theory, artificial bee colony algorithm, water evaporation optimization algorithm
  • سید امیر بنی مهد*

    در این تحقیق شناسایی محل و میزان آسیب در سازه با استفاده از الگوریتم بهینه سازی زنبور عسل مصنوعی بررسی شده است. تعیین میزان و محل خسارت در سازه ها با استفاده از بازرسی میدانی و چشمی فرآیندی پرهزینه است، لذا با استفاده از روش های تحلیلی علاوه بر سرعت دسترسی قابل ملاحظه، هزینه های تعیین محل و میزان آسیب نیز کاهش می یابد. با دانستن فرکانس ها و شکل های مودی سازه آسیب دیده که از نتایج اندازه گیری بدست می آید و همچنین فرض عدم تغییر ماتریس جرم در سازه سالم و آسیب دیده، ماتریس سختی به گونه ای تعیین می شود که در قضیه مقادیر ویژه ماتریس جرم و سختی سازه آسیب دیده صدق نماید. حل مساله از روش معکوس نیازمند سعی و خطای متعددی تا رسیدن به جواب قابل قبول می باشد ولی استفاده از الگوریتم های بهینه سازی عددی می تواند به گونه ای فضای پاسخ را جستجو کند که تعداد سعی های لازم بسیار کم و محدود گردد. در این پژوهش الگوریتم زنبور عسل مصنوعی برای تعیین ماتریس سختی سازه آسیب دیده استفاده می گردد. همچنین روش SEREP برای فشرده سازی ماتریس جرم و سختی به منظور کاهش حجم محاسبات بکارگیری می شود. برای ارزیابی این روش، دو خرپای مسطح و فضایی و یک قاب مسطح هر کدام با دو سناریوی خسارت درنظر گرفته می شود. نتایج بررسی نشان می دهد که این روش توانایی و دقت قابل قبولی در تعیین میزان و محل آسیب در سازه با وجود اطلاعات فرکانسی و شکل مودی نویزدار دارد.

    کلید واژگان: تشخیص خسارت، الگوریتم زنبور عسل مصنوعی، روش فشرده سازی SEREP
    S. Amir Banimahd*

    In recent years, the damage identification of structures becomes more attractive for researchers in order to assess ‎the quantify condition of structural system during service life. Moreover, identifying the damage location and ‎severity is very important after disaster such as earthquake and terrorist attak. Structures can be also damaged by ‎normal activity such as corrosion, aging, fatique, wind, waveload etc. Therefore the structural health monitoring is ‎an emerging field to ensure the continues and periodic performance of structures. In this paper, identification of the ‎extent and location of damages in structures are studied by analytical method using artificial bee colony ‎optimization (ABC). In the analytical method, the mass and stiffness matrices of structure could be determine by ‎the finite element procedure. Considering the stiffness matrix of healthy structure and that of the damage structure, ‎the location and severity of the damage could be determined. It is assumed that the global mass matrix remains ‎unchanged after the damage occures in the structure. The natural frequencies and mode shapes of damaged ‎structure can be obtained by measurement. In the study, the damage characteristics are known. Then by applying ‎the eigenvalue equation, the stiffness matrix is determined for damaged structure. Finding the extent and location ‎of damage is introduced as an inverse problem. Using the conventional methods are very expensive and time ‎consuming, while metaheuristic evolutionary computing method is capable to solve complex combinational ‎optimization problems. Swarm intelligence algorithm introduces the collactive behavior of social insects colonies ‎to solve optimization problems. Artificial bee colony algoritm is an evolutionary computing method, which is ‎developed, based on the intelligent foraging behavior of honeybee swarm. Each food source is considered as a ‎possible solution. The location and quality of the nectar from the flower is related to the damage properties and ‎fitness function, respectively. The dimension of every artificial employed bee is equal to the number of member of ‎the structure. Then quality value of the food source is evaluated by the fitness function. The best fitness value is ‎memorized in each search. When the fitness value denote improved after a predefined iterative, the new possible ‎solution will be considered. In the ABC process, the number of food source, the limit and the maximum cycle ‎number are three control parameters. In the optimization problem, applying a proper objective function is one of ‎the indispesable part of the process. Since the structural damage detection is a highly nonlinear problem, a proper ‎objective function can detect the damage accurately and quackly. There are various methods for damage detection, ‎which generaly can be classified into two categories, static and dynamic method. Because of the efficiency of the ‎dynamic method, the objective function is selected based on the dynamic technique, which utilize the eigenvalue ‎problem. In the mathematical equation of the objective function, the mass and stiffness matrix of healthy structure ‎is defined by finite element method. The natural frequencies and mode shapes obtained by the measurement. The ‎stiffness matrix of damaged structure is determined with the optimization algorithm to minimize the objective ‎function. In a measurement test, the used sensors cannot detect all of the degrees freedom of a structure, therefore ‎the obtained information in measurement include a limited number of frequencies or mode shapes. In addition, to ‎avoid a time consuming process, it may be decided to utilize only a limit number of frequencies obtained by the ‎measurement. The system equivalent reduction expansion process (SEREP), which is an accurate and efficient ‎technique of model reduction, is utilized in the paper. Moreover, the damage detection is examined through three ‎numerical examples, plane and space truss and palne frame, each one has two damage scenarios, which include ‎noisy measurement data. The results indicate that the proposed method is a powerfull procedure to detect damages ‎in structures.‎

    Keywords: Damage detection, Artificial bee colony algorithm, SEREP codensatation
  • سید احمدرضا میربد، حسین تاجمیر ریاحی *، مریم داعی
    در طراحی سازه های متکی بر سیستم جداساز لرزه ای، انتظار می رود که جداساز به تنهایی وارد ناحیه غیرخطی شده و روسازه رفتار الاستیک خطی از خود نشان دهد. اما با توجه به این که تحت شرایط خاص امکان ورود روسازه به حوزه ی رفتار غیرخطی وجود دارد، در این مطالعه به بررسی دقیقتر رفتار غیرخطی این گونه سازه ها پرداخته شده است. در بخش اول مقاله به منظور بررسی تاثیر میزان غیرخطی شدن روسازه و اثر تغییر دیگر پارامترهای سیستم بر پاسخ سازه، از مدل دو درجه آزادی با جداساز خطی استفاده شده است. نتایج نشان می دهد که با وارد شدن رفتار روسازه به محدوده ی غیرخطی، میزان شکل پذیری تقاضا به شدت با افزایش همراه خواهد بود. در بخش دوم برای لحاظ کردن اثر مودهای بالاتر به کمک مدل چند درجه آزادی و سیستم جداساز با فرم رفتار دوخطی، اثرات تغییر پارامترهای سیستم مورد کنکاش قرار گرفته است. نتایج بدست آمده در این قسمت نیز موید افزایش پاسخ سازه برای روسازه با مقاومت پایین است. در نهایت با توجه به افزایش شدید پاسخ سازه در صورت استفاده از ظرفیت روسازه، راهکاری با هدف طرح بهینه ی همزمان روسازه و سیستم جداساز ارایه شده است. این راهکار از تلفیق تئوری شکل پذیری یکنواخت و الگوریتم فراابتکاری کلونی زنبور عسل مصنوعی استفاده می کند. بدین ترتیب می توان با استفاده از ظرفیت شکل پذیری روسازه و جداساز، علاوه بر دستیابی به روسازه سبکتر، به میزان شکل پذیری مطلوب در جداساز نیز دست یافت.
    کلید واژگان: سیستم جداساز لرزه ای، شکل پذیری تقاضا و هدف، شکل پذیری یکنواخت، الگوریتم کلونی زنبور عسل مصنوعی
    Sayed Ahmadreza Mirbod, Hossein Tajmir Riahi *, Maryam Daei
    In the design of seismically base-isolated structures, it is expected that the isolator will experience nonlinear behavior while the superstructure still behaves linearly. Therefore for modeling these systems, a linear behavior is assumed for superstructure and different nonlinear models are used for isolator. But there are special conditions such as strong ground motions in which superstructure behave nonlinearly. In this study, the nonlinear behavior of seismically base-isolated structures is more accurately investigated. This is done using nonlinear time history analysis of structures using ground motions. Two sets of ground motions are selected which represent earthquakes with 475 and 2475 years return period. OpenSees software is used for modeling these structures. The effective parameters on the response of seismically base isolated structure which are investigated are: response modification factor of the superstructure, stiffness of the isolator, damping ratio of the isolator, stiffness of the superstructure and damping ratio of the superstructure. Studies of this paper are divided into two parts. In the first part, two-degree freedom model with viscoelastic isolator has been used to investigate the effect of superstructure nonlinearity. Also a sensitivity analysis is done to find important parameters which have more effects on the systems response. Results of this part show that, nonlinear behavior of superstructure increases system ductility demand drastically. It is concluded that the period of isolator and superstructure have the most effect on the ductility demand. In the second part, the effect of different parameters and higher mode effects on the response of seismically base-isolated structures is investigated using muti-degree of freedom models sited on isolator with bilinear behavior. Results obtained in this part also confirm the increase in the response of the system when the superstructure has low strength. Likewise in this condition, the isolator deformation decreases. Distribution of ductility demand in the height of structure is also non-uniform in this condition and lower stories are more vulnerable. Isolators with a lower fundamental period and also isolators with a lower yield force lead to the least amount of isolator deformation and ductility demand of superstructure. By increasing damping in the isolator, ductility demand of superstructure will increase. A stiffer superstructure with nonlinear behavior has a much more ductility demand rather than similar structure which is more flexible. But when the superstructure behaves linearly, the fundamental period of superstructure and isolator deformation increase or decrease together. Finally, due to the intensive increase in the ductility demand of the superstructure when it behaves nonlinearly, a solution is proposed with the aim of simultaneous optimization of the superstructure and isolator systems. This strategy uses a combination of uniform ductility theory and a modified artificial bee colony algorithm. By applying this method and using ductilities of superstructure and isolator simultaneously, it is possible to obtain the desirable ductility in the isolator, in addition to achieve a more economical choice for the superstructure. If there is no constraint around the structure for movement, by increasing the target ductility of the superstructure, the weight of the superstructure can be reduced by reducing its yield force.
    Keywords: Seismically base-isolated structure, Demand, target ductility, Uniform ductility, Artificial bee colony algorithm
  • کوثر کبیری، محمدسعدی مسگری
    حمل و نقل و سیستم های لجستیکی کارآمد، نقش مهمی در توسعه اقتصادی جامعه ایفا می کند. با توجه به اینکه بخش قابل توجهی از کالاهای ما از طریق پست و توسط حمل و نقل جاده ای انجام می شود. افزایش وسایل نقلیه در حال حرکت در جاده های ما باعث افزایش هزینه، سر و صدا، آلودگی و حوادث می شود. برنامه ریزی و مدیریت حمل و نقل، با استفاده از روش های بهینه سازی می تواند باعث کاهش این اثرات و بهبود خدمات به مشتریان و رضایت هر چه بیشتر آنها شود. مسئله همزمانی دریافت و تحویل محموله های پستی در هر مرکز و همچنین زمان تحویل این محموله ها از اهمیت خاصی برخوردار است. مسئله برنامه ریزی برای محموله های پستی نوع ویژه ای از مسئله دریافت و تحویل کالا با پنجره زمانی[1] می باشد که آن نیز نوع مهمی از مسئله مسیریابی وسایل نقلیه[2] VRP به شمار می آید. هدف این تحقیق برنامه ریزی وبهینه سازی روند جابجایی مجموعه ای از محموله های پستی هستند که در مکان ها و زمان های مشخصی بایستی دریافت و تحویل گردند. ضمن لحاظ نمودن حجم محموله ها و ظرفیت خودروها بایستی هم طول و هم زمان سفرها و هم تعداد خودروها کمینه گردند. از طرفی همانطور که می دانیم روش های بهینه سازی سنتی متداول به دلیل مواجه شدن با پیچیدگی های مسئله در فضاهای جستجوی بزرگ اغلب به بهینه های محلی همگرا می شوند. به همین دلیل در این تحقیق برای حل این مسئله از الگوریتم های فراابتکاری کلونی زنبور عسل و ژنتیک استفاده شده است. مسئله بهینه سازی مورد نظر و شرایط خاص آن و توابع بهینگی و قیود بهینه سازی در قالب اجرای دو الگوریتم مدل سازی گردیدند. که در این الگوریتم ها با تعریف همسایگی مناسب و به کارگیری عملگرهای جهش و تقاطع ابتکاری شرایط حل مسئله بهتر شده است. در نهایت توانایی الگوریتم ها از نظر دقت، سرعت همگرایی و شرط تکرارپذیری مورد ارزیابی قرار گرفته است. نتایج نشان دهنده عملکرد بهتر الگوریتم زنبور نسبت به ژنتیک می باشند. براساس نتایج بدست آمده در هر بار اجرا، الگوریتم ژنتیک و زنبور به ترتیب 84 و 93 درصد امکان رسیدن به بهترین جواب را دارند.
    کلید واژگان: بهینه سازی، فراابتکاری، برداشت و تحویل، پنجره زمانی، الگوریتم ژنتیک، الگوریتم کلونی زنبور
    K. Kabiri, M. Saadi Mesgari
    The development of effective decision support tools that can be adopted in the transportation industry is vital since it can lead to substantial cost reduction and efficient resource consumption. However, vehicles moving on our roads contribute to congestion, noise¡ pollution, and accidents. So route planning and transport management, using optimization tools, can help reduce transport costs by cutting mileage and improving driver and vehicle usage. In addition, it can improve customer service, cut carbon emissions, improve strategic decision making and reduce administration costs.
    Due to the simultaneous pick-up and delivery postal service and delivery time importance of those parcels, this study focuses on the pick-up and delivery problems. The pick-up and delivery problems are important types of vehicle routing problem (VRP). VRP is the core of scientific research on the distribution and transport of people and goods. Unlike the classical VRP, in which all customers require the same services, in the pick-up and delivery problem basic it is considered that two different types of services can be found in one place, in fact there's a pick up or delivery. PDP has several applications in the transportation of pick-up and delivery parcel post. The purpose of this research is to find the most optimal route to transport postal service. It is performed by imposing a series of conditions to the pick-up and delivery problems using meta-heuristic algorithms for the simulation data. It is followed by brief explanation of present metaheuristic algorithms including bee colony algorithm and genetic algorithms and their features. Finally the results of the algorithms are compared on the basis of the accuracy, repeatability, speed of convergence. It is necessary to note that the results are not ideal, but the best case is considered. The results showed the performance of the bee algorithm are better than genetic. Based on the results obtained in each run, genetic algorithms and Bee were 84% and 93% are possible to achieve the best solution.
    Keywords: Optimization, Pickup, Delivery Problem with Time Windows, Meta-Heuristic, Artificial bee Colony Algorithm, Genetic Algorithm
  • S.A.R. Mirbod, M. Daei*, H. Tajmir Riahi
    In this paper, the effective parameters on the ductility demand of the seismically base isolated structure are investigated, and then a relation between the strength reduction factor and the target ductility is presented. The investigation has been conducted by modelling the base isolated structure as a two degree of freedom model in the OpenSees software, and the possibility of yielding in the superstructure has been considered in the model. Results show that the period of isolator and superstructure have the most effect on the ductility demand, therefore these two parameters beside the strength reduction factor and the target ductility have been used as variables of relation. A nonlinear regression model has been developed for forecasting the relation and the constant parameters of the proposed scheme has been obtained based on an optimization model solved by modified artificial bee colony (ABC) algorithm. A database including 224 models under 20 earthquake records with 2% probability of exceedance in 50 years have been generated for this purpose. Since there is not any explicit closed form formula to calculate the strength reduction factor for a specific target ductility; another optimization model has been developed to calculate the data used as input of the nonlinear regression model. The proposed relation includes two nonlinear functions and it is able to quantify the inelastic performance of base isolated structures for a wide range of earthquake records accurately.
    Keywords: seismic isolation, strength reduction factor, target ductility, regression model, artificial bee colony algorithm
  • علی اصغر حیدری، رحیم علی عباسپور*
    تاکنون الگوریتم های گوناگونی جهت تکمیل و ارتقای زیرساخت سامانه های ناوبری خودکار سیستم های پرنده بدون سرنشین ارائه شده است. بااین حال، کوشش های اندکی در طراحی مسیریاب های آشوب بنیاد به منظور تعیین خط سیر بهینه این سیستم ها در سناریوهای شهری انجام گردیده است. در این مقاله، مسیریاب پیشنهادی به گونه ای پیاده سازی می شود که با در نظر گرفتن قیود ماموریت نظیر زوایای چرخش و پارامترهای دینامیکی پرواز، نواحی ممنوعه، حدود نقشه و ارتفاع ایمن، پارامترهایی شامل ارتفاع پرواز، طول مسیر و میزان مصرف انرژی را کمینه نماید. بدین انگیزه، نخست یک مدل جامع جهت توصیف مساله مسیریابی سکو ارائه گردیده و سپس بر پایه تلفیق تئوری آشوب و محاسبات تکاملی، چهار الگوریتم تکاملی آشوب مبنای جدید پیشنهاد می گردد. در ادامه، تحلیل و ارزیابی جامع کارکرد الگوریتم های ارائه شده در مساله مسیریابی بر پایه نرخ موفقیت، دقت و کیفیت پاسخ ها، زمان اجرا و سرعت همگرایی انجام می گردد. ارزیابی نتایج مبین کسب برترین نتایج با به کارگیری الگوریتم تکامل تفاضلی با سیگنال آشوبی لجستیک می باشد.
    کلید واژگان: مسیریابی، سیستم های پرنده بدون سرنشین، تئوری آشوب، محاسبات تکاملی، تکامل تفاضلی، رقابت استعماری، توده ذرات، زنبورعسل مصنوعی
    A. A. Heidari, R. A. Abaspour*
    Unmanned aerial systems (UAS) are one of the latest technologies utilized in the hazard management and remote sensing. Nowadays, tendency in the development of UAS is toward autonomous navigation or hybrid tasks. In this context, development of comprehensive, efficient methodologies for path planning, control and navigation of UAS can be regarded as one of the fundamental steps for the development of autonomous systems. Up to now, different planning algorithms have been proposed in the specialized literature in order to enrich the framework of autonomous navigation of unmanned aerial systems. However, few efforts have been devoted to design new chaotic path planners for determining the optimal trajectories of these aerial systems in urban areas. An effective path planning technique can attain mission aims with respect to various restrictions of the UAS and less computational time.Chaos theory is one of the most studied theories with different applications in engineering and technology. Most of the natural processes demonstrate chaotic behavior such as black hole and clouds. Past researchers showed that if an evolutionary algorithm be hybridized with chaos, its performance will have improved, considerably. However, most of the evolutionary algorithms are inspired from nature, but all of their steps are random based motions. But nature is not either completely random based or chaotic. Hence, the combination of these theories should be more realistic. With this regard, evolution and chaos are related to each other narrowly in most of the complex natural systems. It is evidenced that some of the chaotic signals can alleviate the premature convergence problem of the evolutionary algorithms in tackling optimization problems.In this article, first, UAS path planning is modeled as a 3D constrained optimization problem. In this modeling, the aim is the optimization of path, fuel and safety with respect to different restrictions. After scheming and suggesting of general planning framework, UAS path planning problem is investigated by comparative study with regard to the studied scenario. For this aim, evolutionary planner is implemented in order to minimize the flight height, path length and energy consumption considering different restrictions such as safe altitude, turning angle, climbing slope, gliding slope, no fly zones and mission map limits. Then, a comprehensive model is employed to describe route-planning task, and then, based on the hybridization of chaos theory with evolutionary computing, four new evolutionary optimizers are developed. Hence, this paper developed four chaotic optimizers including particle swarm optimization, differential evolution, imperialist competitive algorithm and artificial bee colony technique based on 14 chaotic signals.In the rest of this paper, analyses, and extensive performance evaluation of the designed trajectory-planning approaches are performed according to the success rate results, precision and quality of the results, CPU running times, and convergence speed. The results show that the proposed framework can be utilized in represented scenario as an effective path planner. Proposed strategies are capable to compute the optimal paths more efficiently in comparison with the standard algorithms. From the results it is known that the chaotic differential evolution with logistic map can outperform the other compared algorithms.
    Keywords: Path Planning, Unmanned Aerial Systems, Chaos Theory, Evolutionary Computing, Differential Evolution, Imperialist Competitive Algorithm, Particle Swarm Optimization, Artificial Bee Colony Algorithm
  • Ch Gheyratmand, S. Gholizadeh *, B. Vababzadeh
    A new meta-heuristic algorithm is proposed for optimal design of reinforced concrete (RC) frame structures subject to combinations of gravity and lateral static loads based on ACI 318-08 design code. In the present work, artificial bee colony algorithm (ABCA) is focused and an improved ABCA (IABCA) is proposed to achieve the optimization task. The total cost of the RC frames is minimized during the optimization process subject to constraints on demand capacity ratios (DCRs) of structural members. Three benchmark design examples are tested using ABCA and IABCA and the results are compared with those of presented in the literature. The numerical results indicate that the proposed IABCA is an efficient computational tool for discrete optimization of RC frames.
    Keywords: reinforced concrete frame, static loads, optimization, artificial bee colony algorithm
  • S. Talatahari, M. Nouri, F. Tadbiri
    Over the past few years, swarm intelligence based optimization techniques such as ant colony optimization and particle swarm optimization have received considerable attention from engineering researchers. These algorithms have been used in the solution of various structural optimization problems where the main goal is to minimize the weight of structures while satisfying all design requirements imposed by design codes. In this paper, artificial bee colony algorithm (ABC) is utilized to optimize different skeletal structures. The results of the ABC are compared with the results of other optimization algorithms from the literature to show the efficiency of this technique for structural design problems.
    Keywords: artificial bee colony algorithm, structural design problems, skeletal structures, trusses, frames
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال