heuristic algorithms
در نشریات گروه عمران-
مدیریت کیفیت آب مستلزم اتخاذ تصمیمات صحیح مدیریتی است و لازمه این امر پیش بینی و تخمین کیفیت آب در بدنه های آبی می باشد. استفاده از روش های هوش مصنوعی از جمله مدل های کارا در پیش بینی متغیرها و شاخص های کیفیت آب می باشد. در این تحقیق، در ابتدا با استفاده از سیزده متغیر ورودی کیفیت آب شامل اکسیژن محلول، اکسیژن موردنیاز شیمیایی، اکسیژن موردنیاز بیولوژیکی، هدایت الکتریکی، نیترات، نیتریت، فسفات، کدورت، شاخص اسیدیته، کلسیم، منیزیم، سدیم و دما مقادیر شاخص کیفی (WQI) ماهانه بر اساس دستور العمل موسسه بهداشت ملی (NSF) برای نه ایستگاه آب سنجی رودخانه کارون تخمین زده شده است. سپس، از روش های آنالیز حساسیت آزمون گاما (GT)، آنالیز مولفه های اصلی (PCA) و انتخاب پیشرو متغیرها (FS) به منظور دست یابی به انتخاب بهینه متغیرهای ورودی به مدل هوشمند سیستم استنتاجی عصبی-فازی تطبیقی (ANFIS) استقاده گردید. در نهایت، ضرایب ثابت توابع عضویت موجود در ساختار مدل ANFIS با استفاده از چهار الگوریتم های بهینه ساز کلونی مورچگان (ACO)، وراثتی (GA) و ازدحام ذرات (PSO) محاسبه گردیدند. نتایج شاخص های آماری نشان داد که مدل ترکیبی GT-ANFIS-PSO با داشتن مقادیر ضریب همبستگی، میانگین خطای مطلق و جذر میانگین مربعات خطا به ترتیب برابر با0/952، 1/68 و 3/05 در مرحله آزمایش در مقایسه با سایر مدل های ترکیبی دارای عملکرد بهتری می باشد. همچنین، مقادیر شاخص کیفی آب در بازه20 تا 58/4 قرار گرفتند که بیانگر کیفیت نسبتا بد تا خوب آب رودخانه کارون می باشد.
کلید واژگان: شاخص کیفی آب، سیستم های استنتاجی عصبی-فازی تطبیقی، آنالیز حساسیت، الگوریتم های فراکاوشی، رودخانه کارونManagement of water quality is inextricably bound up with making good management decisions and this typical management is at the mercy of predicting the water quality index (WQI). The use of board range of artificial intelligence models for analyzing surface water quality is one of the most efficient techniques to predict water quality parameters and WQI. In the current research, at the first, datasets accumulated from nine hydrometry stations, located in Karun River, were included those of 13 water quality parameters (i.e., dissolved oxygen, chemical oxygen demand, biochemical oxygen demand, electrical conductivity, nitrate, nitrite, phosphate, turbidity, pH, calcium, magnesium, sodium, and water temperature) which was used to estimate WQI. So, to obtain an optimal selection of ANFIS model-feeding-input variables, gamma test (GT), forward selection (FS), and principal component analysis (PCA) evaluations were applied. Ultimately, constant coefficients of membership function used in the ANFIS model were computed by using evolutionary techniques including a genetic algorithm (GA), ant colony optimization (ACO), and particle swarm optimization (PSO) for training the structure of the ANFIS model. Results of statistical assessments indicated that the GT-ANFIS-PSO model with a correlation coefficient of 0.952, mean absolute error of 1.68, and root mean square error of 3.05 had a satisfying performance for prediction of WQI compared with other optimized ANFIS models. Moreover, values of WQI ranged from 30 to 58.4 which were indicative of being relatively poor to the good water quality of Karun River.
Keywords: Water Quality Index, Adaptive neuro-fuzzy inference system, Sensitivity analysis, Heuristic Algorithms, Karun River -
Distributing Portable Excess Speed Detectors in AL Riyadh City
This study presents a mathematical approach to distribute portable excess speed detectors in urban transportation networks. This type of sensor is studied to be located in a network in order to separate most of the demand node pairs in the system resembling the well-known traffic sensor surveillance problem. However, newly, the locations are permitted to be changed introducing the dynamic form of the sensor location problem. The problem is formulated mathematically into three different location problems, namely SLP1, SLP2, and SLP3. The aim is to find the optimal number of sensors to intercept most of the daily traffic for each model objective. The proposed formulations are proven to be an NP-hard problem, and then heuristics are called for the solution. The methodology is applied to AL Riyadh city as a real case study network with 240 demand node pairs and 124 two-way streets. In the SLP1, all the demand node pairs are covered by 19% of the network’s roads, whereas SLP2 model shows the best locations for each assumed budget of sensors to purchase. The SLP2 solutions range from 24 sensors with 100% paths coverage to 1 sensor with nearly 20% of paths coverage. The SLP3 model manages to redistribute the sensors in the network while maintaining its traffic coverage efficiency. Four locations structures manage to cover all the network streets with coverage ranges between 100% and 60%. The results show the capability of providing satisfactory solutions with reasonable computing burden.
Keywords: Speed sensors, Dynamic location problem, Set covering problem, Traffic safety, Heuristic algorithms -
Monitoring the seepage, particularly the piezometric water level in the dams, is of special importance in hydraulic engineering. In the present study, piezometric water levels in three observation piezometers at the left bank of Jiroft Dam structure (located in Kerman province, Iran) were simulated using soft computing techniques and then compared using the measured data. For this purpose, the input data, including inflow, evaporation, reservoir water level, sluice gate outflow, outflow, dam total outflow, and piezometric water level, were used. Modeling was performed using multiple linear regression method as well as soft computing methods including regression decision tree, classification decision tree, and three types of artificial neural networks (with Levenberg-Marquardt, particle swarm optimization, PSO, and harmony search learning algorithms, HS). The results of the present study indicated no absolute superiority for any of the methods over others. For the first piezometer the ANN-PSO indicates better performance (correlation coefficient, R=0.990). For the second piezometer ANN-PSO shows better results with R=0.945. For the third piezometers MLR with R=0.945 and ANN-HS with R=0.949 indicate better performance than other methods. Furthermore, Mann-Whitney statistical analysis at confidence levels of 95% and 99% indicated no significant difference in terms of the performance of the applied models used in this study.Keywords: Data driven models, dam surveillance, soft computing, heuristic algorithms, dam engineering
-
با افزایش روزافزون جمعیت و در نتیجه افزایش تقاضای حمل ونقل کالا، اهمیت طراحی مناسب شبکه های حمل ونقل کالا بیش از پیش نمایان شده است. استفاده از هاب ها در شبکه های حمل و نقل باعث کاهش قابل توجهی در هزینه ها و تعداد مسیرهای ارتباطی و همچنین کاهش مصرف انرژی می گردد. بنابرین، با توجه به کاربردهای مهم شبکه های هاب در حمل ونقل کالا، در این مقاله، مسئله مکان یابی هاب میانه چند هدفه چند محصولی بررسی شده است. همچنین با توجه به اهمیت مسایل زیست محیطی و آلایندگی شبکه های حمل و نقل کالا، یکی از توابع هدف در نظر گرفته شده برای مدل ارایه شده، کمینه سازی انتشار گازهای گلخانه ای با استفاده از رویکرد تئوری صف است. از طرفی، با توجه به موضوع کمیابی منابع در اقتصاد و اهمیت بررسی چگونگی تامین مالی در پروژه های بزرگ و زیرساختی کشور که امکان تامین سرمایه کامل آن توسط دولت فراهم نیست، نیاز به تامین از سایر روش های تامین مالی امری حیاتی است؛ بر همین اساس فرض استفاده از تسهیلات مالی از سه روش ممکن با در نظر گرفتن محدودیت منابع برای تاسیس هابها نیز به مدل اضافه شده است. بنابراین در مدل سازی مسئله مکان یابی هاب چند محصولی با استفاده از حمل ونقل زمینی کالا، هزینه تاسیس هاب های ترکیبی (جاده ای-ریلی) و هزینه حمل ونقل بین هابها و هاب به غیر هاب در تابع هدف کمینه شده است. داده های مورد استفاده از آمار ارائه شده حمل ونقل جاده ای کشور در سال 1392 به دست آمده است. برای حل مسئله از دو الگوریتم فراابتکاری استفاده شده است. نتیجه بررسی نشان می دهد طراحی شبکه حمل و نقل کالایی کشور با استفاده از هاب های ترکیبی (جاده ای – ریلی) با تعداد 12 هاب (استان کشور) دارای کمترین هزینه برای کل شبکه حمل و نقل کالا در کشور میباشد.کلید واژگان: مکان یابی هاب میانه، هاب چندمحصولی، رویکرد زیست محیطی، روش های تامین مالی، الگوریتم های فراابتکاری، شبکه حمل و نقل کالای ایرانTransportation systems are among the most important sectors in each country. With population growth, demand increases for transport of goods. In such situations importance of the proper design of transportation networks is undeniable. Inter-city transport is completely essential for distributing goods around the country. The proper design of an efficient public transport system is crucial. Using Hub networks become popular in such situations. Therefore, with respect to important applications in public transport, in this paper we investigate the multi-product multi-objective p-hub median location problem. Also, considering the importance of environmental issues and pollution of transport networks in this study a multi-objective model is intended to minimize greenhouse gas emissions. Due to the scarcity of financial resources in the economy, methods of Finance in the proposed model are also included. Data from the statistics of country road transport in 1392 is obtained. To solve the problem, the Gams 24.1.3 optimization software and meta-heuristic algorithms, i.e. Simulated Annealing (SA) and Imperialist Competitive Algorithm (ICA) are applied. The results show that ICA overcomes SA.Keywords: Median hub location, multi, product hub, environmental approach, funding methods, meta, heuristic algorithms, Iran transportation network
-
This paper investigates discrete design optimization of reinforcement concrete frames using the recently developed meta-heuristic called Enhanced Colliding Bodies Optimization (ECBO) and the Non-dominated Sorting Enhanced Colliding Bodies Optimization (NSECBO) algorithm. The objective function of algorithms consists of construction material costs of reinforced concrete structural elements and carbon dioxide (CO2) emissions through different phases of a building life cycle that meets the standards and requirements of the American Concrete Institute’s Building Code. The proposed method uses predetermined section database (DB) for design variables that are taken as the area of steel and the geometry of cross-sections of beams and columns. A number of benchmark test problems are optimized to verify the good performance of this methodology. The use of ECBO algorithm for designing reinforced concrete frames indicates an improvement in the computational efficiency over the designs performed by Big Bang-Big Crunch (BB-BC) algorithm. The analysis also reveals that the two objective functions are quite relevant and designs focused on mitigating CO2 emissions could be achieved at an acceptable cost increment in practice. Pareto results of the NSECBO algorithm indicate that both objective yield similar solutions.Keywords: Meta, heuristic algorithms, enhanced colliding bodies optimization, non, dominated sorting enhanced colliding bodies optimization, reinforcement concrete frames, multi, objective optimization, CO2 emissions
-
This paper presents most recent meta-heuristic algorithm, symbiotic organisms search (SOS), for optimum design of structures. The SOS simulates the symbiotic interaction strategies adopted by organisms to survive and propagate in the ecosystem. Due to some difficulties on finding optimum design of frame structures and grillage systems, this problem is known as one of benchmark examples in the field of structural optimization. Therefore, the new algorithm is adapted to find optimum design of structures. The performance of the algorithm is then evaluated by comparing with some other methods. The results confirm the validity of the new algorithm.Keywords: Optimum design, symbiotic organisms search, frame structures, grillage systems, meta, heuristic algorithms
-
A new hybrid framework is proposed for optimization of orderable search spaces. It is based on fuzzy-membership of design variable alternatives to the optimal solution. The method has dynamic behavior since the membership values are assigned as any solution candidates arises during the search and they are summed based on their overlaps in the alternatives scope. A trail matrix is also utilized to indirectly share values of the fuzzy memberships further ranked regarding closeness of an individual to the optimal solution both in the objective function and in the design space scope. The method takes benefit of different random, vector-sum and probability-based walks to move new solutions toward the global optimum. Utilizing a generalized cooling procedure, the related thresholds are tuned to choose between different walk types in searching the design space and also a search refinement strategy is developed. Two variants of such a framework is then proposed and compared with each other in addition to some well-known procedures including genetic algorithm and particle swarm optimization. Test results with some treated problems, reveals the superior performance of the proposed algorithm and its special feature in adaptive tuning the diversity index during the search.Keywords: Meta, heuristic algorithms, information share, fuzzy logic, structural optimization
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.