جستجوی مقالات مرتبط با کلیدواژه
تکرار جستجوی کلیدواژه neural radius-based function network در نشریات گروه فنی و مهندسی
neural radius-based function network
در نشریات گروه عمران
تکرار جستجوی کلیدواژه neural radius-based function network در مقالات مجلات علمی
-
یکی از روش های مناسب جهت بررسی زلزله های مختلف و تعیین میزان خطرپذیری در هر منطقه پیش بینی پارامترهای جنبش نیرومند زمین می باشد که نقش مهمی را در ارزیابی اثرات زلزله در طراحی پروژه های مهندسی ایفا می کند. در پژوهش حاضر از مدل ماشین بردار پشتیبان و شبکه عصبی شعاع محور که از تکنیک های هوش مصنوعی هستند برای برآورد بیشینه شتاب زمین استفاده شده است. بدین منظور از پارامترهای لرزه ای شامل بزرگای زلزله، فاصله محل رخداد زلزله تا سایت، عمق کانونی زلزله و شدت زلزله به عنوان پارامترهای ورودی مدل های ماشین بردار پشتیبان و شبکه عصبی شعاع محور استفاده شده است. مقایسه نتایج برآورد بیشینه شتاب زمین با ماشین بردار پشتیبان و شبکه عصبی شعاع محور با روابط کاهندگی تجربی و روش های رگرسیون بیانگر آن است که روش ماشین بردار پشتیبان و شبکه عصبی شعاع محور ارائه شده می توانند ارتباط مناسبی را میان مقادیر مشاهداتی و محاسباتی برقرار نمایند. همچنین این روش ها از دقت بالاتری نسبت به روش های کلاسیک پیشین برخوردار هستند به طوری که ضریب تبیین برای روش ماشین بردار پشتیبان 996/0 و شبکه عصبی شعاع محور 997/0 و برای روش های رگرسیونی خطی و رگرسیونی غیرخطی به ترتیب 790/0 و 153/0 می باشد.کلید واژگان: مدل های داده کاوی، ماشین بردار پشتیبان، شبکه عصبی شعاع محور، حداکثر شتاب زمینPrediction of the ground strong motion parameters is one way to evaluate the various earthquakes and to determine the amount of risk in each area which plays an important role in the evaluation of earthquake effects on the engineering projects design. In this study, the support vector machine (SVM) and neural radius-based function (RBF) network models as new artificial intelligence techniques were used to estimate the peak ground acceleration (PGA). For this purpose, the seismic parameters such as the magnitude, epicentral distance, focal depth, earthquake intensity were applied as input parameters of proposed models. Evaluation of obtained results for the estimation of PGA using the SVM and RBF models with empirical attenuation relationships and regression methods indicated that the presented SVM and RBF models can establish an appropriated relationship between the observed and calculated PGA values. Also, proposed models have more accuracy than classical approaches. The determination coefficient is 0.996 and 0.997 for SVM and RBF models, respectively where as the determination coefficient is 0.790 and 0.153 for linear regression and nonlinear regression, respectively.Keywords: Data driven models, Support vector machine, Neural radius-based function network, Peak ground acceleration
نکته
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.