به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

objective function

در نشریات گروه عمران
تکرار جستجوی کلیدواژه objective function در نشریات گروه فنی و مهندسی
  • Mehdi Shalchi Tousi, * Samane Laali

    This paper presents an economical optimization for cost and weight of reinforcement cantilever concrete retaining walls using Cuckoo Optimization Algorithm (COA). The proposed optimization algorithm is inspired from the life of a bird family called cuckoo. The capability of this algorithm is compared with other optimization methods available in the literature including ant colony optimization (ACO), bacterial foraging optimization algorithm (BFOA), particle swarm optimization (PSO), accelerated particle swarm optimization (APSO), firefly algorithm (FA), and cuckoo search (CS). A computer program has been developed by using the COA method for optimizing retaining walls. Five types of retaining walls were considered and sensitivity analyses were performed to find out the role of important parameters such including stem height, surcharge, backfill slope, and backfill unit weight and friction angle. Also, Coulomb and Rankine methods are used to estimate lateral earth pressures. The results show that the COA can minimize retaining walls from both cost and weight viewpoints. In addition, the COA can achieve to better results than ACO, BFOA, PSO, APSO, FA, and CS. The performed sensitivity analysis illustrates that with increasing surcharge and stem height, the cost and weight of wall increase. Also, the cost and weight objective functions decrease with increasing the soil unit weight. In addition, the Coulomb method gives lower cost and weight quantities than the Rankine method.

    Keywords: Sensitivity Analysis, Retaining Walls Optimization, Cuckoo Optimization Algorithm, Objective Function, Optimum Design
  • Mehdi Shalchi Tousi, Samane Laali *
    This paper presents an economical optimization for cost and weight of reinforcement cantilever concrete retaining walls using Cuckoo Optimization Algorithm (COA). The proposed optimization algorithm is inspired from the life of a bird family called cuckoo. The capability of this algorithm is compared with other optimization methods available in the literature including ant colony optimization (ACO), bacterial foraging optimization algorithm (BFOA), particle swarm optimization (PSO), accelerated particle swarm optimization (APSO), firefly algorithm (FA), and cuckoo search (CS). A computer program has been developed by using the COA method for optimizing retaining walls. Five types of retaining walls were considered and sensitivity analyses were performed to find out the role of important parameters such including stem height, surcharge, backfill slope, and backfill unit weight and friction angle. Also, Coulomb and Rankine methods are used to estimate lateral earth pressures. The results show that the COA can minimize retaining walls from both cost and weight viewpoints. In addition, the COA can achieve to better results than ACO, BFOA, PSO, APSO, FA, and CS. The performed sensitivity analysis illustrates that with increasing surcharge and stem height, the cost and weight of wall increase. Also, the cost and weight objective functions decrease with increasing the soil unit weight. In addition, the Coulomb method gives lower cost and weight quantities than the Rankine method.
    Keywords: Retaining walls optimization, Sensitivity analysis, Cuckoo Optimization Algorithm, Objective function, Optimum design
  • F. Biabani, A. Razzazi, S. Shojaee*, S. Hamzehei-Javaran

    Presently, the introduction of intelligent models to optimize structural problems has become an important issue in civil engineering and almost all other fields of engineering. Optimization models in artificial intelligence have enabled us to provide powerful and practical solutions to structural optimization problems. In this study, a novel method for optimizing structures as well as solving structure-related problems is presented. The main purpose of this paper is to present an algorithm that addresses the major drawbacks of commonly-used algorithms including the Grey Wolf Optimization Algorithm (GWO), the Gravitational Search Algorithm (GSA), and the Particle Swarm Optimization Algorithm (PSO), and at the same time benefits from a high convergence rate. Also, another advantage of the proposed CGPGC algorithm is its considerable flexibility to solve a variety of optimization problems. To this end, we were inspired by the GSA law of gravity, the GWO's top three search factors, the PSO algorithm in calculating speed, and the cellular machine theory in the realm of population segmentation. The use of cellular neighborhood reduces the likelihood of getting caught in the local optimal trap and increases the rate of convergence to the global optimal point. Achieving reasonable results in mathematical functions (CEC 2005) and spatial structures (with a large number of variables) in comparison with those from GWO, GSA, PSO, and some other common heuristic algorithms shows an enhancement in the performance of the introduced method compared to the other ones.

    Keywords: truss optimization, CGPGC, grey wolf optimizer, gravitational search algorithm, particle swarm optimization, objective function, CEC functions
  • A. Ghadimi Hamzehkolaei*, A. Vafaeinejad, G. Ghodrati Amiri

    This paper presents an optimization-based model updating approach for structural damage detection and quantification. A new damage-sensitive objective function is proposed using a condensed form of the modal flexibility matrix. The objective function is solved using Chaotic Imperialist Competitive Algorithm (CICA), as an enhanced version of the original Imperialist Competitive Algorithm (ICA), and the optimal solution is reported as the damage detection results. The application of the CICA in vibration-based damage detection and quantification has been successfully investigated in a feasibility study published by the authors of the present paper and herein, its application is generalized for a case in which a complex (but more sensitive) objective function is utilized to formulate the damage detection problem as an inverse model updating problem. The method is validated by studying different damage patterns simulated on three numerical examples of the engineering structures. Comparative studies are carried out to evaluate the accuracy and repeatability of the proposed method in comparison with other vibration-based damage detection methods. The obtained results introduce the proposed damage detection approach as a robust method with high level of accuracy even in the presence of noisy inputs.

    Keywords: finite element model, structural damage, condensed modal flexibility, objective function, chaotic imperialist competitive algorithm (CICA)
  • رضا مویدفر*، میلاد بهاروندی

    مدیریت تعمیر و نگهداری روسازی یک فرآیند هماهنگ و منظم برای انجام تمام فعالیت های مربوط به فراهم سازی و نگهداری روسازی جاده ها می باشد. هدف عمده مدیریت روسازی ، پیش بینی شرایط روسازی و هزینه مرتبط با نگهداری و بازسازی در یک برنامه زمان بندی مشخص و کمک به برنامه ریزی کارهاست [1]. با ساخت و اجرای صحیح مدیریت رو سازی ، امکان تصمیم گیری های صحیح ، آگاهانه و پایدار در نگهداری، ترمیم و بازسازی ها فراهم می آید . مدیریت تعمیر و نگهداری روسازی راه ها ، روشی اقتصادی و به صرفه برای مراقبت از یک سرمایه ملی بسیار مهم و برنامه ریزی برای حفاظت و بهسازی آن است [2]. در این پژوهش هدف آن ا ست که با توجه به عدم قطعیت های موجود در میزان بودجه های تخصیص یافته جهت تعمیر و نگهداری روسازی جاده ، مدیریت بهینه صورت می گیرد، ارایه یک روش مناسب برای صرف این بودجه به بهترین نحو ممکن است. در این پژوهش ،محور خرم آباد - درود به عنوان یک مطالعه موردی انتخاب شده است، که جهت مدیریت بهینه تعمیر و نگهداری روسازی جاده ها تحت عدم قطعیت بودجه از روش برنامه ریزی خطی استفاده شده است. تابع هدف نهایی این برنامه ریزی ، ارتقای سطح کیفی راه های استان با داشتن محدودیت بودجه ای است. برای انجام محاسبات از نرم افزار GAMS استفاده شده است ، نتایج نشان خواهد داد که بودجه در دسترس چگونه بین بخش های گوناگون تقسیم نمود تا بهترین نتیجه ممکن حاصل شود.

    کلید واژگان: مدیریت تعمیر و نگهداری، عدم قطعیت بودجه، ایمنی راه ها، تابع هدف
    Reza Moayedfar *, Milad Baharvandi

    pavement management system (PMS) is the coordinate and regular process for doing all of the activities in roads. the main purpose of PMS is the prediction of pavement condition and the life cycle cost for determining the suitable time table. by true construction and management, we can provide a true decision making and sustainable maintenance for rehabilitation and reconstruction of the roads. The true construction and management. PMS is the economic method for maintenance of the one of the most important national funds. the aim of this research is that according to the uncertainty of the assigned budgets, the optimum management for M&R methods was done. at this research, the road of Khorramabad-dorood was selected as the case study. the objective function at this research is the promotion of the roads quality according to budget limitations. for calculations, GAMS software has been used. the results show that, how we can prioritize the budget among the several sections.

    Keywords: maintenance, rehabilitation management, budget’s uncertainty, roads safety, Objective Function
  • علی کاوه*، سید میلاد حسینی، فرناز برزین پور

    در مطالعه‌ی حاضر، یک روش جدید به‌روزرسانی مدل بر مبنای پارامترهای مودال اصلی سازه (بسامدهای طبیعی و شکل‌های مودی متناظر) ارایه شده است. بدین منظور، یک تابع ترکیبی ارتعاش محور با هدف کمینه‌سازی اختلاف بین مشخصات سازه‌ی اندازه‌گیری شده و مدل تحلیلی تعریف شده است. به‌منظور کاهش آثار نوفه، یک تابع جریمه بر تابع هدف اعمال شده است. برای حل مسیله‌ی شناسایی آسیب از الگوریتم بهینه‌یاب مبتنی بر آموزش و یادگیری استفاده شده است. جهت ارزیابی تابع هدف، سه مثال عددی بررسی شده است. چالش‌هایی نظیر اثر نوفه و تابع جریمه در نتایج شناسایی آسیب مطالعه شده است. همچنین مطالعه‌یی برای مقایسه‌ی تابع هدف پیشنهادی با سه تابع هدف دیگر مبتنی بر اطلاعات مودال انجام شده است. نتایج نشان می‌دهند که روش پیشنهادی با اعمال تابع جریمه و به کار بردن الگوریتم بهینه‌سازی مبتنی بر آموزش و یادگیری می‌تواند یک روش قابل اطمینان و پایدار در شناسایی آسیب سازه‌ها محسوب شود.

    کلید واژگان: شناسایی آسیب، روش به روزرسانی مدل، پارامترهای مودال، تابع هدف، الگوریتم بهینه سازی مبتنی بر آموزش و یادگیری
    A. Kaveh *, S.M. Hosseini, F. Barzinpour

    Engineering structures are prone to damage over their service life as a result of natural disaster so that damage spreading may lead to many casualties. In order to prevent these catastrophic events, early damage detection must be carried out. By considering these issues, numerous structural damage detection methods have been proposed by many researchers in the last few decades. Among all sorts of methods developed for damage detection in structures, vibration-based methods due to their simplicity and applicability are highly favored by many researchers. The basic conceptual of the vibration-based methods is that modal parameters (natural frequencies and their associated mode shapes) are functions of the physical properties of the structure (mass, damping, and stiffness). Therefore, changes in the physical properties will cause changes in the modal properties. A class of vibration-based methods is identified and damages are quantified using the model updating approach. In these methods, an objective function defined in terms of the discrepancies between the analytical model and real structural system is minimized as an optimization problem. In this paper, a novel model updating method is presented based on a structure’s main modal parameters (natural frequencies and their corresponding modal shapes). For this purpose, a hybrid vibration-based objective function is proposed to minimize the differences between the structure’s properties and the analytical model. A penalty function is integrated into the objective function to reduce the effects of noise in damage detection and uncertainties in the assessment procedure. The Teaching-Learning-Based Optimization (TLBO) algorithm is applied to solve this problem as an optimization problem. This algorithm is inspired by the traditional learning process of students in school. The two main stages of this algorithm are the effect of the teacher’s knowledge on student learning by the convergence strategy and students learning from each other by the divergence strategy. To evaluate the applicability of the proposed objective function in detecting the location and intensity of the damage, three numerical cases are considered. These cases include an 8-story shear frame, a continuous beam, and a spatial truss. Different challenges such as the effect of noise on measured data and the effect of the penalty-function on results of damage detection were considered. Furthermore, a comparative study is investigated between the proposed objective function and three other objective functions developed based the main model parameters. The results demonstrated that the proposed method is a reliable and stable technique in damage prognosis in structures.

    Keywords: Damage detection, model updating method, modal parameters, objective function, Teaching–learning-based optimization
  • AliReza Ghanizadeh *, Nasrin Heidarabadizadeh, MohammadJavad Mahmoodabadi

    The main purpose of this work is the comparison of several objective functions for optimization of the vertical alignment. To this end, after formulation of optimum vertical alignment problem based on different constraints, the objective function was considered as four forms including: 1) the sum of the absolute value of variance between the vertical alignment and the existing ground; 2) the sum of the absolute value of variance between the vertical alignment and the existing ground based on the diverse weights for cuts and fills; 3) the sum of cut and fill volumes; and 4) the earthwork cost and then the value of objective function was compared for the first three cases with the last one, which was the most accurate ones. In order to optimize the raised problem, Genetic Algorithm (GA) and Group Search Optimization (GSO) were implemented and performance of these two optimization algorithms were also compared. This research proves that the minimization of sum of the absolute value of variance between the vertical alignment and the existing ground, which is commonly used for design of vertical alignment, can’t at all grantee the optimum vertical alignment in terms of earthwork cost.

    Keywords: Earthwork Volumes, Group Search Optimization (GSO), Objective function, Optimization, Optimum Vertical Alignment
  • S. M. Hosseini, GH. Ghodrati Amiri*, M. Mohamadi Dehcheshmeh

    Civil infrastructures such as bridges and buildings are prone to damage as a result of natural disasters. To understand damages induced by these events, the structure needs to be monitored. The field of engineering focusing on the process of evaluating the location and the intensity of the damage to the structure is called Structural Health Monitoring (SHM). Early damage prognosis in structures is the fundamental part of SHM. In fact, the main purpose of SHM is obtaining information about the existence, location, and the extent of damage in the structure. Since numerous structural damage detection problems can be solved as an inverse problem based on the proposed objective functions by using optimization algorithm, in this paper, related studies are investigated which discussing objective functions based on Modal Strain Energy (MSE) and flexibility methods including Modal Flexibility (MF), and Generalized Flexibility Matrix (GFM). To illustrate the extent of effectiveness of these objective functions based on the above-mentioned modal parameters, an efficiency index called Impact Factor (IF) is defined. Finally, the best objective function is introduced for each numerical case study based on IF by means of evaluating the obtained result.

    Keywords: structural health monitoring (SHM), objective function, modal strain energy (MSE), modal flexibility (MF), generalized flexibility matrix (GFM), impact factor (IF)
  • سیدعلی سیدرزاقی*، بهادر عادل، علی زارع، غلام رضا قدرتی

    در این مقاله یک رویکرد جدید بروزرسانی مدل برای سلامت سنجی و تعیین محل و شدت آسیب در سازه های مهندسی ارائه می گردد. به این منظور، یک تابع هدف حساس به رخداد آسیب برپایه ی تابع خطای مستقیم  با کمک روش انطباق نقطه ای و به کارگیری اطلاعات مودال سازه ی آزمایش شده و مدل تحلیلی آن معرفی می شود. در این تابع هدف، اطلاعات مودال (بسامدهای طبیعی و شکل های مود متناظر) به صورت مستقیم و بدون واسطه ترکیب می شوند که این امر سهولت ارزیابی تابع هدف و حساسیت زیاد آن به رخ داد آسیب را به دنبال دارد. به منظور یافتن جواب بهینه ی مسئله که همان آسیب های شناسایی شده در سازه است، از الگوریتم بهینه یابی پروانه-شعله استفاده می شود. الهام بخش اصلی این الگوریتم، همگرایی مارپیج پروانه ها به سمت شعله های مصنوعی می باشد. بروزرسانی موقعیت پروانه ها نسبت به شعله ها که بهترین جواب های بدست آمده در طول تکرارها می باشند، احتمال همگرایی زودرس به نقاط بهینه ی محلی را کاهش داده، همگرایی الگوریتم به نقطه ی اکسترمم کلی را تضمین می نماید. کارآیی روش پیشنهادی با مطالعه ی سه مثال عددی که شامل یک قاب برشی هفت طبقه، یک تیر ساده و یک خرپای دو بعدی می باشد، ارزیابی می گردد. در این مطالعه هر کدام از سازه ها با روش اجزای محدود مدل سازی شده و آسیب با کاهش سختی در عضوهای آسیب دیده، شبیه سازی می شود. هم چنین اثر وجود نوفه ی تصادفی در داده های ورودی بر روی عملکرد روش پیشنهادی بررسی می شود. نتایج به دست آمده عملکرد خوب و پایدار روش مطرح شده را برای شناسایی آسیب نشان می دهد.

    کلید واژگان: شناسایی آسیب، اطلاعات مودال، تابع هدف، انطباق نقطه ای، بهینه یاب پروانه-شعله
    Seyed Ali Seyed Razzaghi*, Bahador Adel, Gholamreza Ghodrati, Ali Zare

    Structural damage not only changes the dynamic characteristics of the structure, but also it may lead to complete destruction of the structure in some cases. Since early identification of damage can prevent such catastrophic events, structural health monitoring and damage detection has absorbed the attention of the civil, mechanical and aerospace engineers in the last decades. An effective health monitoring methodology not only can provide information about the global serviceability of the monitored structure, but also it can help the engineers to prepare cost-effective rehabilitation programs based on the obtained details about the health of the structure and its members. Different methods have been proposed for structural damage identification and estimation. Vibration-based methods consider the changes in the structural modal parameters, like natural frequencies and associated mode shapes, and/or their derivatives, like modal flexibility and residual force vector, for damage identification and quantification. Considering their acceptable sensitivity to wide-range of structural damages, vibration-based methods are considered as one of the most practical approaches for structural fault prognosis. Employing vibration parameters to define the damage detection problem as a model updating problem, is one of the well-known strategies that can return both the damage location and extent in different types of engineering structures. Such methods can be solved with optimization algorithms to find and report the structural damage in terms of the global extremums of a damage-sensitive objective function.
    In this paper a new model updating approach for health monitoring and damage localization and quantification in engineering structures is presented. At first, a damage-sensitive objective function, which is based on the error function between the modal data of the monitored structure and its analytical model, is proposed. This objective function is formulated by means of the point-by-point matching strategy to minimize the difference between two models. Modal natural frequencies and the associated mode shape vectors are directly fed to the objective function and this can result in an easy assessment methodology to check the convergence rate of the function. Moreover, in such a case, the objective function uses the sensitivity of both these parameters for damage identification. The proposed inverse problem is solved using Moth-Flame Optimization (MFO) algorithm which has been inspired form spiral convergence of moths toward artificial lights. From mathematical point of view, updating the position of the moths with respect to the flames –which are the best solutions obtained during iterations–, reduces the probability of being trapped in the local extremum points and also, ensures the convergence of the algorithm to its global optimal solution. The applicability of the method was evaluated by studying different damage patterns on three numerical examples of engineering structures: a seven-story shear frame, a simple beam with 10 elements, and a planar truss with 29 elements. In all these studies, damages were simulated as reduction in the stiffness matrix of the damaged elements. Different issues, like noise effects, were considered and their impacts on the performance of the proposed method were investigated. Furthermore, comparative studies were carried out to discuss the advantages and drawbacks of the introduced method as well as the employed techniques. The obtained results indicate that the method is an effective strategy for vibration-based damage detection and localization in engineering structures.

    Keywords: Damage identification, Modal data, Objective function, Point-by-point matching strategy, Moth-flame optimization
  • H. Mazaheri, H. Rahami *, A. Kheyroddin
    Structural damage detection is a field that has attracted a great interest in the scientific community in recent years. Most of these studies use dynamic analysis data of the beams as a diagnostic tool for damage. In this paper, a massless rotational spring was used to represent the cracked sections of beams and the natural frequencies and mode shape were obtained. For calculation of rotational spring stiffness equivalent of uncracked and cracked sections, finite element models and experimental test were used. The damage identification problem was addressed with two optimization techniques of different philosophers: ECBO, PSO and SQP methods. The objective functions used in the optimization process are based on the dynamic analysis data such as natural frequencies and mode shapes. This data was obtained by developing a software that performs the dynamic analysis of structures using the Finite Element Method (FEM). Comparison between the detected cracks using optimization method and real beam shows an acceptable agreement.
    Keywords: crack, rotational spring, objective function, optimization, ECBO, bending rigidity
  • میر رضا غفاری رزین، بهزاد وثوقی
    در این مقاله روش کمینه سازی توابع هدف با کمک شبکه های عصبی موجک چند لایه، جهت مدل سازی توموگرافی یونوسفر به عنوان یک روش جدید ارائه شده است. براساس روش توموگرافی، تابع هدفی تعریف گردیده و سپس با کمک شبکه های عصبی موجک چند لایه (WNN) طراحی شده، مقدار این تابع هدف به کمترین میزان خود می رسد. جهت بهینه سازی وزن ها و بایاس ها در شبکه های عصبی، می بایستی از یک الگوریتم آموزش مناسب بهره گرفت. به همین جهت در این مقاله از الگوریتم های آموزش پس انتشار خطا (BP) و بهینه سازی انبوه ذرات (PSO) استفاده شده است. سه روش ترکیبی برای کمینه سازی توابع هدف که جزو نوآوری های اصلی این مقاله است مورد بررسی و آنالیز قرار گرفته است. در روش اول (RMTNN) از شبکه عصبی مصنوعی پرسپترون 3 لایه با الگوریتم آموزش پس انتشار جهت مدل سازی توزیع چگالی الکترونی استفاده شده است. در روش دوم (MRMTNN) یک شبکه عصبی موجک 3 لایه بهمراه الگوریتم آموزش پس انتشار خطا جهت مدل سازی توزیع چگالی الکترونی بکار گرفته شده و نهایتا در ترکیب سوم (ITNN) از شبکه عصبی موجک 3 لایه بهمراه الگوریتم آموزش بهینه سازی انبوه ذرات جهت مدل سازی تغییرات زمان-مکان چگالی الکترونی بهره گرفته شده است. مشاهدات مربوط به شبکه مبنای ژئودینامیک دائمی ایران (32 ایستگاه GPS به همراه یک ایستگاه اندازه گیری مستقیم یونوسفر) جهت آزمون و ارزیابی هر سه ترکیب مورد استفاده قرار گرفته اند. تمامی نتایج بدست آمده از سه روش با اندازه گیری های ایستگاه یونوسوند و مدل هارمونیک‍ های کلاه کروی (SCH) مقایسه شده است. همچنین شاخص های آماری خطای نسبی و مطلق، جذر خطای مربعی میانگین (RMSE)، بایاس، انحراف معیار و ضریب همبستگی برای هر سه روش پیشنهادی این مقاله مورد محاسبه و بررسی قرار گرفته است. آنالیزهای انجام گرفته در مورد روش های RMTNN، MRMTNN و ITNN بیانگر این موضوع است که روش ITNN نسبت به دو روش دیگر دارای سرعت همگرایی بالا به جواب بهینه و همچنین دقت و صحت بالاست. مقایسه های صورت گرفته نشان دهنده بهبود مدل سازی محتوای الکترون کلی توسط روش ITNN به مقدار 5/0 الی 65/5 TECU در منطقه ایران نسبت به مدل های تجربی یونوسفر می باشد. همچنین متوسط ضریب همبستگی 901/0 مابین خروجی های روش ITNN و اندازه گیری های ایستگاه های یونوسوند، حاکی از کارائی بالای روش پیشنهادی این مقاله در مدل سازی تغییرات زمان-مکان چگالی الکترونی است.
    کلید واژگان: توموگرافی یونوسفر، محتوای الکترون کلی، شبکه عصبی مصنوعی، تابع هدف، چگالی الکترونی، GPS، IRI، 2012، RMTNN، MRMTNN، ITNN
    M. R. Ghaffari Razin, B. Voosoghi
    In the last two decades, knowledge of the distribution of the ionospheric electron density considered as a major challenge for geodesy and geophysics researchers. To study the physical properties of the ionosphere, computerized ionosphere tomography (CIT) indicated an efficient and effective manner. Usually the value of total electron content (TEC) used as an input parameter to CIT. Then inversion methods used to compute electron density at any time and space. However, CIT is considered as an inverse ill-posed problem due to the lack of input observations and non-uniform distribution of TEC data. Many algorithms and methods are presented to modeling of CIT. For the first time, 2-dimensional CIT was suggested by Austin et al., (1988). They used algebraic reconstruction techniques (ART) to obtain the electron density. Since, other researchers have also studied and examined the CIT. Although the results of all studies indicates high efficiency of CIT, but two major limitations can be considered to this
    Method
    first, due to poor spatial distribution of GPS stations and limitations of signal viewing angle, CIT is an inverse ill-posed problem. Second, in most cases, observations are discontinuous in time and space domain, so it is not possible determining the density profiles at any time and space around the world.
    In this paper, the method of residual minimization training neural network is proposed as a new method of ionospheric reconstruction. In this method, vertical and horizontal objective functions are minimized. Due to a poor vertical resolution of ionospheric tomography, empirical orthogonal functions (EOFs) are used as vertical objective function. To optimize the weights and biases in the neural network, a proper training algorithm is used. Training of neural networks can be considered as an optimization problem whose goal is to optimize the weights and biases to achieve a minimum training error. In this paper, back-propagation (BP) and particle swarm optimization (PSO) is used as training algorithms. 3 new methods have been investigated and analyzed in this research. In residual minimization training neural network (RMTNN), 3 layer perceptron artificial neural networks (ANN) with BP training algorithm is used to modeling of ionospheric electron density. In second method, due to the use of wavelet neural network (WNN) with BP algorithm in RMTNN method, the new method is named modified RMTNN (MRMTNN). In the third method, WNN with a PSO training algorithm is used to solve pixel-based ionospheric tomography. This new method is named ionospheric tomography based on the neural network (ITNN).
    The GPS measurements of the Iranian permanent GPS network (IPGN) (1 ionosonde and 4 testing stations) have been used for constructing a 3-D image of the electron density. For numerical experimentation in IPGN, observations collected at 36 GPS stations on 3 days in 2007 (2007.01.03, 2007.04.03 and 2007.07.13) are used. Also the results have been compared to that of the spherical cap harmonic (SCH) method as a local ionospheric model and ionosonde data. Relative and absolute errors, root mean square error (RMSE), bias, standard deviations and correlation coefficient computed and analyzed as a statistical indicators in 3 proposed methods. The Analyzes show that the ITNN method has a high convergence speed and high accuracy with respect to the RMTNN and MRMTNN. The obtained results indicate the improvement of 0.5 to 5.65 TECU in IPGN with respect to the other empirical methods.
    The GPS measurements of the Iranian permanent GPS network (IPGN) (1 ionosonde and 4 testing stations) have been used for constructing a 3-D image of the electron density. For numerical experimentation in IPGN, observations collected at 36 GPS stations on 3 days in 2007 (2007.01.03, 2007.04.03 and 2007.07.13) are used. Also the results have been compared to that of the spherical cap harmonic (SCH) method as a local ionospheric model and ionosonde data. Relative and absolute errors, root mean square error (RMSE), bias, standard deviations and correlation coefficient computed and analyzed as a statistical indicators in 3 proposed methods. The Analyzes show that the ITNN method has a high convergence speed and high accuracy with respect to the RMTNN and MRMTNN. The obtained results indicate the improvement of 0.5 to 5.65 TECU in IPGN with respect to the other empirical methods.
    Keywords: Ionospheric Tomography, Total Electron Content, Artificial Neural Network, Objective Function, GPS, IRI-2012, SCH, RMTNN, MRMTNN, ITNN
  • H. Eskandari*, A. Pakzad
    Due to its convenience, speed, and quality of implementation, overusing of self consolidating concrete necessitates adopting new methods to optimize its designs. This study focuses on effective parameters in determining the decision variables related to the objective function of optimization concrete and introduces a set of optimization techniques; finally, based on the simplex method, the study presents the highly optimized mixing amounts of each self-consolidating concrete component such as cement, water, coarse and fine aggregates, superplasticizer, and powder, according to the strength standards. The results demonstrate that the optimization method selection depends on the objective function, decision variables, and constraints and has a significant impact on the calculation of concrete mix design. Besides, the component''s value parameter poses a large influence on the compressive strength of concrete.
    Keywords: Self, compaction concrete, optimization, mix design, objective function
  • امیر فایضی، حمید محرمی
    در این مقاله استراتژی کنترل بهینه ساختمانهای مجهز به میراگر MR با استفاده از شبکه عصبی فازی ANFIS ارائه گشته است. ابتدا یک تابعک هدف (J) پیشنهاد گشته و از معادلات دینامیکی سازه به همراه میراگر MR به عنوان قیود آن استفاده گردیده است. با حداقل کردن این تابعک هدف، تاریخچه زمانی بهینه ولتاژهای اعمالی به میراگرها بدست آورده شده است. از این ولتاژها و پاسخهای سازه ای متناظر، برای آموزش ANFIS استفاده شده است. با به کار گیری ANFIS می توان به سرعت و به دقت ولتاژهای بهینه ی میراگرها را در حین وقوع زلزله واقعی تعیین نمود. برای نمونه، یک قاب برشی 15 طبقه توسط ANFIS کنترل شده است. نتایج حاصل، کاهش مناسبی را در حداکثر و میانگین زمانی دریفت نسبی طبقات و برش پایه نسبت به حالت کنترل نشده و کاهش قابل توجهی را در حداکثر و میانگین زمانی شتاب مطلق طبقات نسبت به حالت کنترل شده به صورت غیر فعال نشان می دهد.
    کلید واژگان: کنترل بهینه، میراگر MR، ANFIS، تابع هدف، قاب برشی
    Amir Fayezi, Hamid Moharrami
    Due to high capacity and low energy consumption of Magneto-Rheological (MR) dampers، they are vastly being utilized to control seismic responses of structures. Presenting more precise methods for control algorithm، and including more realistic physical chara­­cteristics of MR dampers (e. g. nonlinearities، uncertainties and …) will help engineers to employ this kind of damper more efficiently. In order to achieve a controller that quickly and accurately determines the input voltages to the MR dampers، in this paper، a new strategy is proposed. The proposed strategy utilizes Adaptive Network based Fuzzy Inference System، (ANFIS) for optimal control of structures that are equipped with MR dampers. To obtain optimal time histories of demanded voltages، a new objective functional (J) that is a combination of some control criteria including reduction of relative drifts، absolute accelerations and absorbed energy is suggested. The optimization problem is such formulated that the set of equations of motions and equations representing the nonlinear model of MR dampers (here Bouc-Wen) are solved simultaneously. The optimization problem is solved by the enhanced method of steepest descend algorithm by Moharrami and Fayezi [3]. In this way، for a 15-storey building frame subjected to two deterministic earthquakes، the time histories of optimal input voltages of dampers are numerically computed. Next، the optimal voltages associated with the data on drifts، velocities and accelerations of stories are used as desired input- output data pairs to train the ANFIS as a quick and accurate controller. Three ANFISs were trained by different weights for drift (q1) and absolute acceleration (q2) data versus voltages. The weights of q1 and q2 controlling data were assumed to be (1،0)، (0،1) and (1، 0. 42) for ANFIS1، ANFIS2 and ANFIS3، respectively. Finally، to establish a context for assessment of the effectiveness of the proposed strategy in comparison with other conventional methods and to analyze the effects of weights in the objective functional، two numerical cases are presented. In the first case، the aforementioned 15-storey building frame is controlled against some earthquakes which were not applied for training process of ANFIS. Results show that ANFIS1 has decreased maximum and time-averaged relative drifts more than other control methods. In addition، this controller has somehow attenuated base shear similar to passive-on but has not been successful in reduction of absolute acceleration values. The ANFIS2 has controlled absolute accelerations better than other controllers whereas drifts have been reduced fairly well. By the ANFIS3، one can achieve reasonable decrease in all controlling criteria. Their values are between ANFIS1 and ANFIS2. It can be concluded that depending on the relative importance of control on drifts or accelerations of stories، one can chose proper weights for q1 and q2. In the second example، a benchmark six-storey building that is equipped with 2 dampers in the first، and 2 dampers in the second storey، has been controlled by the three proposed controllers. The results are compared with several conventional methods. The proposed strategy show more flexibility in reduction of the structural control criteria in comparison with some other conventional methods.
    Keywords: optimal control, MR damper, ANFIS, objective function, shear frame
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال