clustering
در نشریات گروه فناوری اطلاعات-
The purpose of this study is to design and analyze a model for exit strategies from recession in companies operating in the automotive parts manufacturing industry. This study is of a developmental-applied nature and follows a mixed-methods approach (qualitative and quantitative). The qualitative section is based on a multi-grounded theory approach to develop a qualitative model of dimensions, combining empirical exploratory findings (interviews) and theoretical exploratory findings (meta-synthesis of scientific documents). Quantitative analyses were conducted using the fuzzy cognitive map approach and clustering of companies based on k-means partitioning. The validity of the qualitative findings was confirmed using content validity for constructs and the opinions of external experts. The quantitative research population consisted of two groups: an expert panel of 18 individuals and managers and directors of automotive parts manufacturing companies located in northwest Iran. The expert panel was selected through purposive sampling, while the sample of companies, comprising 360 firms, was selected using stratified random sampling based on provincial distribution. The qualitative findings identified a model of exit strategies from recession for automotive parts manufacturers within a framework of 63 key concepts, 11 subcategories, and 3 major categories. The quantitative findings resulted in the development of a relational model comprising one sender node, two receiver nodes, and eight central nodes. Company clustering identified three major clusters of firms in response to recession exit strategies. The overall analysis of corporate exit strategies from recession indicated that automotive parts manufacturers should adopt a long-term plan focused primarily on transformation-oriented strategies to achieve a suitable level of competitiveness and competitive advantage in the business environment.
Keywords: Supply Chain Management Strategies, Recession, Automotive Component Manufacturing Industry, Clustering -
آفت سوسک سرخرطومی حنایی عامل ورود بیماری های باکتریایی و قارچی به نخل می باشد که در صورت مشاهده در مزارع، خسارت سنگینی به نخلستان ها وارد می کند. امروزه تحول در محیط ارتباطات بی سیم امکان توسعه گره های حسگر کم هزینه، کم مصرف، چند عملکردی و کوتاه برد جهت ردیابی این آفت در نخلستان را فراهم آورده است. در الگوریتم های ردیابی هدف موجود، با افزایش سرعت هدف، احتمال از دست دادن هدف نیز افزایش می یابد. بر این اساس در مقاله حاضر روش جدیدی برای ردیابی هدف پیشنهاد می شود که از دست دادن هدف را کاهش می دهد. از طرفی با توجه به محدودیت انرژی سطح باتری در گره های حسگر، نیازمند برنامه زمانی برای دوره خواب و بیداری حسگرها در راستای افزایش طول عمر شبکه هستیم. به منظور بهبود مصرف انرژی در این مقاله از رویکرد برنامه ریزی زمانی جهت تنظیم دوره خواب و بیداری گره ها با استفاده از الگوریتم بهینه سازی ازدحام گربه و منطق فازی استفاده شده است. از شبیه سازی روش پیشنهادی و مقایسه آن با روش Tracking-45-Degree-vectors در شبیه ساز Opnet می توان دریافت که پروتکل پیشنهادی عملکرد بسیار بهتری دارد، بطوریکه نرخ تاخیر انتها به انتها به میزان 02/27 درصد، نرخ تاخیر دسترسی به رسانه به میزان 01/2 درصد، نرخ گذردهی به میزان 62/0 درصد، نسبت سیگنال به نویز به میزان 28/3 درصد و میانگین انرژی مصرفی باتری به میزان 277/8 درصد نسبت به پروتکل Tracking-45-Degree-vectors بهبود یافته است. لازم به ذکر است الگوریتم پیشنهادی برای یک هدف شبیه سازی و تست شده است.
کلید واژگان: خوشه بندی، مصرف انرژی، شبکه های حسگر بی سیم، الگوریتم بهینه سازی ازدحام گربه ها، منطق فازی، ردیابی هدف متحرک، سوسک سرخرطومی خرما.The Rhynchophorus ferrugineus is a major pest that serves as a carrier for bacterial and fungal diseases, causing significant damage to palm plantations when observed on farms. Nowadays, advancements in wireless communication environments have made it possible to develop low-cost, energy-efficient, multi-functional, and short-range sensor nodes for tracking this pest in palm plantations. In existing target tracking algorithms, the probability of losing the target increases with its speed. Therefore, this paper proposes a new method for target tracking that reduces the likelihood of losing the target. Additionally, considering the energy constraints of battery-powered sensor nodes, we need a scheduling mechanism for their sleep and wake-up cycles to enhance the network's lifespan. To improve energy consumption, this paper utilizes a time scheduling approach to adjust the sleep and wakeup periods of nodes using the Cat Swarm Optimization algorithm and Fuzzy Logic optimization. By simulating the proposed method and comparing it with the Tracking-45-Degree-vectors method in the Opnet simulator, it can be observed that the proposed protocol performs significantly better. Specifically, the end-to-end delay rate improves by 27.02%, the media access delay rate improves by 2.01%, the throughput rate improves by 0.62%, the signal-to-noise ratio improves by 3.28%, and the average battery energy consumption improves by 8.77% compared to the Tracking-45-Degree-vectors protocol. It is worth mentioning that the proposed algorithm has been simulated and tested for a single target scenario.
Keywords: Clustering, Energy Consumption, WSN, Cat Swarm Optimization Algorithm, Fuzzy Logic, Target Tracking, Rhynchophorus Ferrugineus -
مصرف انرژی یکی از جدی ترین چالش ها برای به حداکثر رساندن طول عمر و پایداری در طراحی شبکه های حسگر بی سیم می باشد. خوشه بندی به عنوان یکی از روش های کنترل همبندی برای حفظ پایداری این شبکه ها می تواند به طور قابل توجهی کاهش مصرف انرژی را در پی داشته باشد. استفاده از روش های مختلف برای انتخاب سرخوشه ها یک چالش مهم در این حوزه تحقیقاتی به شمار می-رود. خوشه بندی همراه با متوازن سازی بار کاری برای گره هایی که به طور معمول بار کاری یکسانی ندارند، نیز به عنوان یک چالش مطرح می باشد. از این رو، یک روش خوشه بندی کارآمد می تواند موجب پایداری، تعادل بار و افزایش طول عمر در شبکه های حسگر بی سیم شود. در این مقاله، یک روش خوشه بندی گره ها برای شبکه های حسگر بی سیم با هدف متوازن سازی بارکاری و مصرف انرژی و درنتیجه، افزایش طول عمر شبکه، ارائه می شود. با لحاظ نمودن پارامتر های موثر در توازن بار گره ها، از قبیل انرژی سرخوشه و گره های خوشه، پایداری خوشه و مسافت انتقال داده، خوشه بندی را به نحوی انجام می دهیم که این توازن در شبکه باعث مصرف متعادل انرژی گره ها و افزایش طول عمر شبکه شود. نتایج ارزیابی های مختلف، کارآمدی روش پیشنهادی را در مقایسه با روش های دیگر، در افزایش و متوازن سازی طول عمر گره ها، نشان می دهد.کلید واژگان: شبکه های حسگر بی سیم، متوازن سازی بار کاری، بهینه سازی طول عمر، خوشه بندیEnergy consumption is one of the most serious challenges to maximize the lifetime and stability in the design of wireless sensor networks. Clustering as one of the methods of control of connectivity to maintain the stability of these networks can significantly reduce energy consumption. Using different methods to select cluster heads is an important challenge in this research area. Clustering with workload balancing for nodes that do not normally have the same workload is also a challenge. Hence, an efficient clustering method can lead to stability, load balancing and increased lifetime in wireless sensor networks. In this paper, a node clustering method for wireless sensor networks is presented with the aim of balancing workload and energy consumption and, as a result, increasing the network lifetime. By considering the effective parameters in the load balancing of nodes, such as the energy of the cluster head and cluster nodes, cluster stability and data transmission distance, we perform clustering in such a way that this balance in the network causes balanced energy consumption of the nodes and increases the network lifetime. The results of various evaluations show the efficiency of the proposed method in comparison with other methods in increasing and balancing the lifetime of the nodes.Keywords: Wireless Sensor Networks, Load Balancing, Lifetime Optimization, Clustering
-
Clustering is a common method for prolonging a wireless sensor network lifetime. We can achieve higher energy efficiency by implementing multi-hop communication. Because of the induced load on the middle clusters, they die faster in comparison to the clusters on the borders. There is an efficient protocol for Rotating Energy-Efficient Clustering (REECHD). In this article, we introduced a load-balancing technique for the REECHD protocol to solve the energy hole issue. Initially, the base station calculates a maximum and minimum cluster range based on node density. We calculate the cluster range for each layer. The final values for these cluster ranges are then used as inputs in the REECHD protocol. The energy efficiency of this technique is compared with the REECHD protocol. The results show that our proposed technique enhances the REECHD in the matter of the first node dies (FND) and half node dies (HND) measure criteria (respectively 15% and 11.5% for 250 node) and also it prolongs the network lifespan by balancing the load on inter-cluster communications.
Keywords: Clustering, Load Balancing, Energy Efficiency, Network Lifetime, Wireless Sensor Network -
از مهمترین ابعاد مدیریت ارتباط با مشتری، کشف الگوی رفتاری خرید مشتری است. سازمان می تواند با تعریف استراتژی های بازاریابی دقیق تر جهت جذب مشتریان مشابه اقدام کند. در دنیای رقابتی امروز، شناخت دقیق مشتریان و توانایی پاسخگویی به نیازهای آن ها برای موفقیت سازمان ها حیاتی است. با پیشرفت های اخیر در حوزه داده کاوی و تحلیل داده های بزرگ، سازمان ها اکنون قادر به استفاده از روش های پیچیده تری برای تقسیم بندی مشتریان و درک بهتر رفتار آن ها هستند. مدل تازگی، فراوانی و مالی (RFM) به عنوان یکی از مدل های مطرح در این زمینه، امکان تقسیم بندی مشتریان بر اساس ارزش آن ها برای سازمان را فراهم می آورد. در این پایان نامه، یک طرح تقسیم بندی مشتریان با استفاده از خوشه بندی فراکتال و روش بهینه سازی AVOAGA که ترکیبی از دو روش بهینه سازی کرکس آفریقایی و روش ژنتیک است ارائه شده است. شبیه سازی طرح پیشنهادی در محیط پایتون و با استفاده از مجموعه داده های استاندارد حاوی RFM مشتریان انجام شد. بر اساس نتایج بدست آمده از شبیه سازی، طرح پیشنهادی در هر دو شاخص پیمانگی و پراکندگی نسبت به طرح پایه بهبود یافته است.کلید واژگان: تقسیم بندی مشتریان، مدل RFM، خوشه بندیOne of the most important aspects of customer relationship management is discovering the customer's purchasing behavior pattern. The organization can act by defining more precise marketing strategies to attract similar customers. In today's competitive world, accurate knowledge of customers and the ability to respond to their needs is critical to the success of organizations. With recent advances in data mining and big data analysis, organizations are now able to use more sophisticated methods to segment customers and better understand their behavior. The novelty, frequency and financial model (RFM) as one of the prominent models in this field, provides the possibility of dividing customers based on their value for the organization. In this thesis, a customer segmentation scheme is presented using fractal clustering and AVOAGA optimization method, which is a combination of two optimization methods, African vulture and genetic method. The simulation of the proposed design was done in the Python environment and using the standard data set containing RFM of customers. Based on the results obtained from the simulation, the proposed design is improved in both compactness and dispersion indices compared to the basic design.Keywords: Customer Segmentation, RFM Model, Clustering
-
Due to the increasing use of VANET networks and the use of smart systems in these types of networks, their challenges have been the focus of researchers. One of the important challenges of such networks is the security issues that threaten this category of networks. In this article, the Sybil attack, which is one of the security challenges in VANET networks, has been investigated and identified. In a Sybil attack, a node threatens VANET networks by stealing the identity of other nodes or creating a virtual identity, by making incorrect decisions and sending false information. In this article, the clustering method is used to avoid the overhead of identification nodes in centralized methods and avoid delay in distributed methods. RSU determines the cluster head with the help of fuzzy logic. The cluster head creates moving clusters by placing similar nodes in terms of direction, speed, and distance in separate clusters while moving. The cluster head performs malicious node detection using a directional antenna and a fuzzy system. The first fuzzy system places the cluster head in the best possible place of the cluster. The cluster head identifies the malicious nodes in each cluster locally, while the second fuzzy system interferes in determining the validity of the cluster members. In the proposed plan, in addition to optimizing the sending and receiving of messages, The simulation results show that the proposed method has improved by 1.2% in detecting the malicious node, 0.4% in the number of a false positive detection, 0.6% in the lost packet, and 0.1% in the delay compared to the previous methods.
Keywords: Vanet, Sybil attack, fuzzy logic, Clustering, directional antenna -
امروزه، خوشه بندی نقش مهمی را در اغلب زمینه های تحقیقاتی مانند مهندسی، پزشکی، زیست شناسی، داده کاوی و... ایفا می نماید. در واقع خوشه بندی به معنای تقسیم بندی بدون نظارت می باشد. داده ها با استفاده از آن به دسته هایی که از نظر پارامترهای موردعلاقه، شباهت بیشتری به یکدیگر دارند، تقسیم می گردند. یکی از روش های معروف در این زمینه k-means می باشد. در این روش علی رغم وابستگی به شرایط اولیه و همگرایی به نقاط بهینه محلی، تعداد N داده به k خوشه با سرعت بالا، دسته بندی می شوند. در این مقاله جهت رفع مشکلات موجود از روش ترکیبی مبتنی بر الگوریتم های تکاملی و تئوری آشوب و k-means بهره گرفته خواهد شد؛ که علاوه بر رفع مشکلات ذکرشده، مستقل از تعداد متغیرها نیز خواهد بود. در این مقاله به منظور اعتبارسنجی، روش های پیشنهادی بر روی 13 مجموعه متفاوت مشهور پیاده سازی می گردد و نتایج با روش های الگوریتم ژنتیک، اجتماع ذرات، کلونی زنبور عسل، تبرید شبیه سازی شده، تکاملی تفاضلی، جستجوی هارمونی و k-means مقایسه خواهند گردید. توانایی بالا و مقاوم بودن این روش ها بر اساس نتایج مشهود خواهد بود.
کلید واژگان: خوشه بندی، الگوریتم K-Means، الگوریتم های تکاملی، آشوب، الگوریتم تکاملی آشوب گونهNowadays, clustering plays an important role in most research fields such as engineering, medicine, biology, data mining, etc. In fact, clustering means unsupervised division. By using it, the data are divided into categories that are more similar to each other in terms of the parameters of interest. One of the famous methods in this field is k-means. In this method, despite the dependence on initial conditions and convergence to local optimal points, N numbers of data are grouped into k clusters with high speed. In this article, to solve the existing problems, the combined method is used based on evolutionary algorithms, chaos theory and k-means; that is in addition to solving the mentioned problems, it will also be independent of the number of variables. In this article, for the purpose of validation, the proposed methods are implemented on 13 different famous collections, and the results are compared with genetic algorithm, particle community, bee colony, simulated refrigeration, differential evolution, harmony search, and k-means methods. The high ability and robustness of these methods will be evident based on the results.
Keywords: Clustering, K-Means Algorithm, Evolutionary Algorithms, Chaos, Chaoticevolutionary Algorithm -
A New Model-based Bald Eagle Search Algorithm with Sine Cosine Algorithm for Data ClusteringJournal of Advances in Computer Engineering and Technology, Volume:7 Issue: 3, Summer 2021, PP 177 -186
Clustering is one of the most popular techniques in unsupervised learning in which data is divided into different groups without any prior knowledge, and for this reason, clustering is used in various applications today. One of the most popular algorithms in the field of clustering is the k-means clustering algorithm. The most critical weakness of k-means clustering is that it is sensitive to initial values for parameterization and may stop at local minima. Despite its many advantages, such as high speed and ease of implementation due to its dependence on the initial parameters, this algorithm is in the optimal local configuration and does not always produce the optimal answer for clustering. Therefore, this paper proposes a new model using the Bald Eagle Search (BES) Algorithm with the Sine Cosine Algorithm (SCA) for clustering. The evaluation of the proposed model is based on the number of iterations, convergence, number of generations, and execution time on 8 UCI datasets. The proposed model is compared with Flower Pollination Algorithm (FPA), Crow Search Algorithm (CSA), Particle Swarm Optimization (PSO), and Sine-Cosine Algorithm (SCA). The results show that the proposed model has a better fit compared to other algorithms. According to the analysis, it can be claimed that the proposed model is about 10.26% superior to other algorithms and also has an extraordinary advantage over k-means.
Keywords: Clustering, Bald Eagle Search Algorithm, Sine-Cosine Algorithm, K-means -
فناوری اینترنت اشیا (IoT) شامل تعداد زیادی گره های حسگر است که حجم انبوهی از داده تولید می کنند. مصرف بهینه انرژی گره های حسگر یک چالش اساسی در این نوع از شبکه هاست. خوشه بندی گره های حسگر در دسته های مجزا و تبادل اطلاعات از طریق سرخوشه ها، یکی از راهکارهای بهبود مصرف انرژی است. این مقاله یک پروتکل مسیریابی مبتنی بر خوشه بندی جدید به نام 1KHCMSBA را ارایه میدهد. پروتکل پیشنهادی بطور بیولوژیکی از ویژگی های جستجوی سریع و موثر الهام گرفته بر اساس رفتار غذایابی میگوها در الگوریتم بهینه سازی گروه میگوها برای خوشه بندی گره های حسگر استفاده می کند. در پروتکل پیشنهادی همچنین از چاهک متحرک برای جلوگیری از مشکل نقطه داغ استفاده می شود. فرآیند خوشه بندی در ایستگاه پایه با یک الگوریتم کنترل متمرکز انجام می شود که از سطوح انرژی و موقعیت قرارگیری گره های حسگر آگاه است. بر خلاف سایر پروتکل های موجود در سایر تحقیقات، KHCMSBA مدل انرژی واقع بینانهای را در شبکه در نظر می گیرد که در شبیه ساز Opnet عملکرد آن مورد آزمایش قرار می گیرد و نتایج حاصل از شبیه سازی با پروتکل (Artifical Fish Swarm Routing Protocol) AFSRP مقایسه می شوند. نتایج حاصل از شبیه سازی حاکی از عملکرد بهتر روش پیشنهادی از نظر انرژی مصرفی به میزان 71 / 12 درصد، نرخ گذردهی به میزان 22 / 14 درصد، تاخیر انتها به انتها به میزان 07 / 76 درصد، نسبت سیگنال به نویز به میزان 82 / 46 درصد نسبت به پروتکل AFSRP است.
کلید واژگان: شبکه حسگر بیسیم، الگوریتم بهینهسازی میگوها، خوشهبندی، چاهک متحرک، پروتکل AFSRP، استاندارد IEEE802.15.4Internet of Things (IoT) technology involves a large number of sensor nodes that generate large amounts of data. Optimal energy consumption of sensor nodes is a major challenge in this type of network. Clustering sensor nodes into separate categories and exchanging information through headers is one way to improve energy consumption. This paper introduces a new clustering-based routing protocol called KHCMSBA. The proposed protocol biologically uses fast and efficient search features inspired by the Krill Herd optimization algorithm based on krill feeding behavior to cluster the sensor nodes. The proposed protocol also uses a mobile well to prevent the hot spot problem. The clustering process at the base station is performed by a centralized control algorithm that is aware of the energy levels and position of the sensor nodes. Unlike protocols in other research, KHCMSBA considers a realistic energy model in the grid that is tested in the Opnet simulator and the results are compared with AFSRP (Artifical Fish Swarm Routing ProtocolThe simulation results show better performance of the proposed method in terms of energy consumption by 12.71%, throughput rate by 14.22%, end-to-end delay by 76.07%, signal-to-noise ratio by 82.82%. 46% compared to the AFSRP protocol
Keywords: Wireless sensor network, Krill Herd optimization algorithm, clustering, mobile well, AFSRP protocol, IEEE802.15.4 standard -
One of the areas in which businesses use artificial intelligence techniques is the analysis and prediction of customer behavior. It is important for a business to predict the future behavior of its customers. In this paper, a customer behavior model using wild horse optimization algorithm is proposed. In the first step, K-Means algorithm is used to classify based on the features extracted from the time series, and then in the second step, wild horse optimization algorithm is used to estimate customer behavior. Three dataset including, the grocery store dataset, the household appliances dataset, and the supermarket dataset are used in the simulation. The best clusters count for the grocery store dataset, the household appliances dataset, and the supermarket dataset are obtained 5, 4, and 4, respectively. The simulation results indicate that this proposed method is obtained the lowest prediction error in three simulated datasets and is superior to other counterparts.Keywords: Customers’ behavior analysis, Clustering, Time series features, Wild horse optimization
-
Clustering is an essential technique for analyzing unlabeled data. In the past few years, population-based meta-heuristic algorithms have been effectively used to solve optimization problems including data clustering. In this paper, a new model based on the combination of Search and Rescue Optimization Algorithm (SAR) with African Vulture Optimization Algorithm (AVOA) named Improved K-Means Search and Rescue with African Vulture Optimization Algorithm (IKM-SARAVOA) is proposed. Two common obstacles in achieving optimal clustering, i.e., premature convergence and getting stuck in local optima can be challenging for the complex clustering problem. In the IKM-SARAVOA model, the SAR is improved by the AVOA in order to optimally cluster and discover cluster centers. AVOA enhances the scope of exploration in SAR. The evaluation of the IKM-SARAVOA model has been performed on six standard datasets from the UCI machine learning database. The fitness function is set based on the sum of squared errors. The results show that the IKM-SARAVOA model has better accuracy compared to SAR and AVOA. IKM-SARAVOA model has achieved fast convergence in a smaller number of iterations.Keywords: Clustering, Search, Rescue Algorithm, African Vulture Optimization Algorithm, convergence
-
Vehicular Ad-Hoc Networks (VANET) models are derived from Mobile Ad-Hoc Networks that possess an impressive role in the intelligent transportation system today and also in the future. So scientists are always looking for the best theories in hope of grasping the fastest and safest connections between vehicles, to provide traffic and accident news in real time. The high number of nodes is one of the significant features of this network that results in an increase of the number of transmitted packets in the network. Distributed system and high mobility of the nodes are the other most important attributes of Vehicular Ad-Hoc networks. In this paper, we aim to review the studies and improvements of vehicular Ad-Hoc network in the fields of safety and traffic management. In addition, we introduce the most common challenges of this network and gather latest methods for resolving those problems. Multi agent systems will be one of the newest and suitable tools in this system. The main purpose is arranging safe connection between agents. Fixing agreements and removing the disputes are not detachable from functional system. It is like group associations and societies which require human collaborations and cooperation. Development of science resulted in utilization of these systems in various aspects like VANET. Nowadays scientists and researchers are interested to make use of these methods for improving the role of vehicle networks in the field of traffic management, safety and entertainment, we will review them in the following paragraphs.
Keywords: Vehicular Ad-Hoc Networks, Multi Agent System, Clustering, Traffic, Routing -
در این مقاله، به منظور افزایش دقت ردیابی هدف سعی در کاهش انرژی مصرفی حسگرها با یک الگوریتم جدید برای ردیابی هدف توزیع شده بنام الگوریتم جستجوی شکار دارد. روش پیشنهادی با پروتکل DCRRP و پروتکل NODIC مقایسه شده است که برای بررسی عملکرد این الگوریتمها از شبیه سازOPNET ورژن 11.5 استفاده شده است. نتایج شبیه سازی نشان می دهد که الگوریتم پیشنهادی از نظر مصرف انرژی، نرخ تحویل سالم داده و نرخ گذردهی نسبت به دو پروتکل دیگر بهتر عمل می کند.
کلید واژگان: شبکه حسگر بی سیم، الگوریتم جستجوی شکار، خوشه بندی، ردیابی هدف متحرک، پروتکلDCRRP، پروتکل NODICIn this paper, in order to increase the accuracy of target tracking, it tries to reduce the energy consumption of sensors with a new algorithm for tracking distributed targets called hunting search algorithm. The proposed method is compared with the DCRRP protocol and the NODIC protocol, which uses the OPNET simulator version 11.5 to test the performance of these algorithms. The simulation results show that the proposed algorithm performs better than the other two protocols in terms of energy consumption, healthy delivery rate and throughput rate.
Keywords: wsn, hunting search algorithm, clustering, target tracking, DCRRP Protocol, Nodic protocol -
Machine learning is one of the most practical branches of artificial intelligence that tries to provide algorithms by which the system can analyze a set of data in different formats. Machine learning algorithms are widely used in biomedicine, bioinformatics and neuroscience. The main goal of this paper is to propose the latest applications of machine learning in bioinformatics and neural imaging and to introduce new branches of research. In this article, the application of four indicators of machine learning techniques in the field of bioinformatics is examined. The four categories of techniques studied include clustering, classification, dimensionality, and deep learning. In this paper, we also show that machine learning techniques can be successfully used to address common bioinformatics challenges such as gene expression, DNA methylation identification, mRNA expression, patient classification, brain network analysis, protein chain identification, clustering, and biomarker identification. In each section, some efficient articles with technical details are discussed separately. The results of some papers are also reported in terms of accuracy, database and techniques used.
Keywords: Machine Learning, Bioinformatics, Neuroimaging, Classification, Clustering -
Energy is an important parameter in establishing various communications types in the sensor-based IoT. Sensors usually possess low-energy and non-rechargeable batteries since these sensors are often applied in places and applications that cannot be recharged. The most important objective of the present study is to minimize the energy consumption of sensors and increase the IoT network's lifetime by applying multi-objective optimization algorithms when selecting cluster heads and routing between cluster heads for transferring data to the base station. In the present article, after distributing the sensor nodes in the network, the type-2 fuzzy algorithm has been employed to select the cluster heads and also the genetic algorithm has been used to create a tree between the cluster heads and base station. After selecting the cluster heads, the normal nodes become cluster members and send their data to the cluster head. After collecting and aggregating the data by the cluster heads, the data is transferred to the base station from the path specified by the genetic algorithm. The proposed algorithm was implemented with MATLAB simulator and compared with LEACH, MB-CBCCP, and DCABGA protocols, the simulation results indicate the better performance of the proposed algorithm in different environments compared to the mentioned protocols. Due to the limited energy in the sensor-based IoT and the fact that they cannot be recharged in most applications, the use of multi-objective optimization algorithms in the design and implementation of routing and clustering algorithms has a significant impact on the increase in the lifetime of these networks.
Keywords: Internet of Things (IoT) Based on Wireless Sensor, Clustering, and Routing, Type-2 Fuzzy, Genetic Algorithms, Multi-Objective Optimization Algorithms -
The Internet of Things (IOT) has advanced in parallel with the wireless sensor network (WSN) and the WSN is an IOT empowerment. The IOT, through the internet provides the connection between the defined objects in apprehending and supervising the environment. In some applications, the IOT is converted into WSN with the same descriptions and limitations. Working with WSN is limited to energy, memory and computational ability of the sensor nodes. This makes the energy consumption to be wise if protection of network reliability is sought. The newly developed and effective hierarchical and clustering techniques are to overcome these limitations. The method proposed in this article, regarding energy consumption reduction is tree-based hierarchical technique, used clustering based on dynamic structure. In this method, the location-based and time-based properties of the sensor nodes are applied leading to provision of a greedy method as to form the subtree leaves. The rest of the tree structure up to the root, would be formed by applying the centrality concept in the network theory by the base station. The simulation reveals that the scalability and fairness parameter in energy consumption compare to the similar method has improved, thus, prolonged network lifetime and reliability.
Keywords: Internet of things, Wireless sensor network, Tree-based hierarchy, Clustering, Energy consumption, Fairness -
The random walk technique, which has a reputation for excellent performance, is one method for complex networks sampling. However, reducing the input data size is still a considerable topic to increase the efficiency and speed of this algorithm. The two approaches discussed in this paper, the no-retracing and the seed node selection algorithms, inspired the development of random walk technique. The Google PageRank method is integrated with these different approaches. Input data size is decreased while critical nodes are preserved. A real database was used for this sampling. Significant sample characteristics were also covered, including average clustering coefficient, sampling effectiveness, degree distribution, and average degree. The no-retracing method, for example, performs better. The efficiency increases even further when the no-retracing technique is combined with the Google PageRank. When choosing between public transportation and aircraft, for example, these algorithms might be used since time is crucial. Additionally, these algorithms are more energy-efficient methods that were looked at.Keywords: Random Walking, Network Sampling, Page-Rank Algorithm, Clustering, Markov chain
-
The majority of wireless sensor network (WSN) security protocols state that a direct connection from an attacker can give them total control of a sensor node. A high level of security is necessary for the acceptance and adoption of sensor networks in a variety of applications. In order to clarify this issue, the current study focuses on identifying abnormalities in nodes and cluster heads as well as developing a method to identify new cluster heads and find anomalies in cluster heads and nodes. We simulated our suggested method using MATLAB tools and the Database of the Intel Research Laboratory. The purpose of the performed simulation is to identify the faulty sensor. Using the IBRL database, sensors that fail over time and their failure model is the form that shows the beats in the form of pulses, we find out that the sensor is broken and is of no value. Of course, this does not mean that the sensor is invasive or intrusive. We have tried by clustering through Euclidean distance that identify disturbing sensors. But in this part of the simulation, we didn't have any data that shows disturbing sensors, it only shows broken sensors. We have placed the sensors randomly in a 50 x 50 space and we want to identify the abnormal node.Keywords: Cluster Head, Clustering, Anomaly, Wireless Sensor Network, Security, node
-
Batch scheduling is among the important problems in industrial engineering and has been widely attendant in practical applications. Clustering is the set of observation assignment into some subsets so that the observations in the same cluster are similar in some sense and the similarity of generated clusters is very low. Clustering is considered as one of the approaches in unsupervised learning and a common technique for statistical data analysis which has been applied in many fields, including machine learning, data mining and etc. This paper studies a case study in Iran Puya company (as a home appliance maker company in Iran). In the production line of refrigerator of the current company, a cutting machine is identified as a bottleneck that can process several iron plates simultaneously. In this regard a good scheduling on this cutting machine improves the effectiveness of production line in terms of cost and time. The objective is to minimize the total tardiness and maximizing the job values when the deteriorated jobs are delivered to each customer in various size batches. Based on these assumptions a mathematical model is proposed and two hybrid algorithms based on simulation annealing and clustering methods are offered for solving it and the results are compared with the global optimum values generated by Lingo 10 software. Based on the effective factors of the problem, a number of sensitivity analyses are also implemented including number of jobs and rate of deterioration. Accordingly, the running time grows exponentially when the number of jobs increases. However the rate of deterioration could not affect the running time. Computational study demonstrates that using clustering methods leads an specified improvements in total costs of company between 15 to 41 percent.
Keywords: Batch scheduling, single machine, deterioration, job values, clustering -
Clustering is one of the essential machine learning algorithms. Data is not labeled in clustering. The most fundamental challenge in clustering algorithms is to choose the correct number of clusters at the beginning of the algorithm. The proper performance of the clustering algorithm depends on selecting the appropriate number of clusters and selecting the optimal right centers. The quality and an optimal number of clusters are essential in algorithm analysis. This article has tried to distinguish our work from other writings by carefully analyzing and comparing existing algorithms and a clear and accurate understanding of all aspects. Also, by comparing other methods using three criteria, the minimum internal distance between points of a cluster and the maximum external distance between clusters and the location of a cluster, we have presented an intelligent method for selecting the optimal number of clusters. In this method, clusters with the lowest error and the lowest internal variance are chosen based on the results obtained from the research.Keywords: clustering algorithms, K-means, Clustering, the optimal number of clusters
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.