به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

data clustering

در نشریات گروه فناوری اطلاعات
تکرار جستجوی کلیدواژه data clustering در نشریات گروه فنی و مهندسی
تکرار جستجوی کلیدواژه data clustering در مقالات مجلات علمی
  • Neda Damya, Farhad Soleimanian Gharehchopogh *

    Clustering is a method of data analysis and one of the important methods in data mining that has been considered by researchers in many fields as well as in many disciplines. In this paper, we propose combining WOA with BA for data clustering. To assess the efficiency of the proposed method, it has been applied in data clustering. In the proposed method, first, by examining BA thoroughly, the weaknesses of this algorithm in exploitation and exploration are identified. The proposed method focuses on improving BA exploitation. Therefore, in the proposed method, instead of the random selection step, one solution is selected from the best solutions, and some of the dimensions of the position vector in BA are replaced We change some of the best solutions with the step of reducing the encircled mechanism and updating the WOA spiral, and finally, after selecting the best exploitation between the two stages of WOA exploitation and BA exploitation, the desired changes are applied on solutions. We evaluate the performance of the proposed method in comparison with other meta-heuristic algorithms in the data clustering discussion using six datasets. The results of these experiments show that the proposed method is statistically much better than the standard BA and also the proposed method is better than the WOA. Overall, the proposed method was more robust and better than the Harmony Search Algorithm (HAS), Artificial Bee Colony (ABC), WOA and BA.

    Keywords: Bat algorithm, Whale Optimization Algorithm, Data clustering, Optimization
  • Rogayyeh Jafari Jabal Kandi, Farhad Soleimanian Gharehchopogh *
    Data clustering is an ideal way of working with a huge amount of data and looking for a structure in the dataset. In other words, clustering is the classification of the same data; the similarity among the data in a cluster is maximum and the similarity among the data in the different clusters is minimal. The innovation of this paper is a clustering method based on the Crow Search Algorithm (CSA) and Opposition-based Learning (OBL). The CSA is one of the meat-heuristic algorithms that is difficult at the exploration and exploitation stage, and thus, the clustering problem is susceptible to initialization for centrality of the clusters. In the proposed model, the crows change their position based on the OBL method. The position of the crows is updated using OBL to find the best position for the cluster. To evaluate the performance of the proposed model, the experiments were performed on 8 datasets from the UCI repository and compared with seven different clustering algorithms. The results show that the proposed model is more accurate, more efficient, and more robust than other clustering algorithms. Also, the convergence of the proposed model is better than other algorithms.
    Keywords: Data clustering, Crow Search Algorithm, Opposition-based learning, centrality
  • Farhad Ramezani *
    In this paper, a new method is proposed for solving the data clustering problem using Cat Swarm Optimization (CSO) algorithm based on chaotic behavior. The problem of data clustering is an important section in the field of the data mining, which has always been noted by researchers and experts in data mining for its numerous applications in solving real-world problems. The CSO algorithm is one of the latest meta-heuristic algorithms, which has a simple structure and it is easy to implement. The purpose of Chaos embedded Cat Swarm Optimization (CCSO) algorithm is to replace random values by chaotic ones to offer a stable algorithm that can allow for reaching the global optima to a large extent and improve the algorithm’s convergence speed. The proposed algorithm has been compared to other heuristic algorithms on standard data sets from UCI repository, and the experimental results demonstrate that the proposed algorithm yields high performance for solving the data clustering problem.Keywords: Data clustering, K-means, Cat Swarm Optimization, Chaos theory.
    Keywords: Data clustering, K-means, Cat Swarm Optimization, Chaos theory
  • Jensi R *
    Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper, a new hybrid data clustering approach which combines the modified krill herd and K-means algorithms, named as K-MKH, is proposed. K-MKH algorithm utilizes the power of quick convergence behaviour of K-means and efficient global exploration of Krill Herd and random phenomenon of Levy flight method. The Krill-herd algorithm is modified by incorporating Levy flight in to it to improve the global exploration. The proposed algorithm is tested on artificial and real life datasets. The simulation results are compared with other methods such as K-means, Particle Swarm Optimization (PSO), Original Krill Herd (KH), hybrid K-means and KH. Also the proposed algorithm is compared with other evolutionary algorithms such as hybrid modified cohort intelligence and K-means (K-MCI), Simulated Annealing (SA), Ant Colony Optimization (ACO), Genetic Algorithm (GA), Tabu Search (TS), Honey Bee Mating Optimization (HBMO) and K-means++. The comparison shows that the proposed algorithm improves the clustering results and has high convergence speed.
    Keywords: Data clustering, Krill Herd, Levy-flight distribution, K-means, Convergence rate
  • Hossein Bakhshi Golestani*, Mohsen Joneidi, Mostafa Sadeghii
    In this paper, the problem of de-noising of an image contaminated with Additive White Gaussian Noise (AWGN) is studied. This subject is an open problem in signal processing for more than 50 years. Local methods suggested in recent years, have obtained better results than global methods. However by more intelligent training in such a way that first, important data is more effective for training, second, clustering in such way that training blocks lie in low-rank subspaces, we can design a dictionary applicable for image de-noising and obtain results near the state of the art local methods. In the present paper, we suggest a method based on global clustering of image constructing blocks. As the type of clustering plays an important role in clustering-based de-noising methods, we address two questions about the clustering. The first, which parts of the data should be considered for clustering? and the second, what data clustering method is suitable for de-noising.? Then clustering is exploited to learn an over complete dictionary. By obtaining sparse decomposition of the noisy image blocks in terms of the dictionary atoms, the de-noised version is achieved. In addition to our framework, 7 popular dictionary learning methods are simulated and compared. The results are compared based on two major factors: (1) de-noising performance and (2) execution time. Experimental results show that our dictionary learning framework outperforms its competitors in terms of both factors.
    Keywords: Image De, Noising, Data Clustering, Dictionary Learning, Histogram Equalization, Sparse Representation
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال