dbscan algorithm
در نشریات گروه فناوری اطلاعات-
سیستم های توصیه گر می توانند درخواست های آینده کاربر را پیش بینی و سپس لیستی از صفحات موردعلاقه کاربر را تولید کند. به عبارت دیگر سیستم های توصیه گر می توانند نمایه ایی دقیق از رفتار کاربران را به دست آورده و صفحه ایی پیش بینی شود که کاربر درحرکت بعدی آن را انتخاب خواهد کرد که این کار می تواند مشکل شروع سرد سیستم را حل و باعث کیفیت بخشیدن به جستجو شود. در این تحقیق به ارایه روش جدیدی به منظور بهبود سیستم های توصیه گر در زمینه وب پرداخته می شود که از الگوریتم خوشه بندی DBSCAN جهت خوشه بندی داده ها استفاده می شود که این الگوریتم امتیاز کارایی 99٪ را به دست آورد. سپس با استفاده از الگوریتم Page rank، صفحات موردعلاقه کاربر وزن دهی می شوند. سپس با استفاده از روش SVM، داده ها را دسته بندی و جهت تولید پیش بینی به کاربر به یک سیستم توصیه گر ترکیبی داده می دهیم که درنهایت این سیستم توصیه گر لیستی از صفحات را در اختیار کاربر قرار خواهد داد که می تواند موردعلاقه وی باشند. ارزیابی نتایج حاصل از تحقیق حاکی از آن بود که استفاده از این روش پیشنهادی می تواند امتیاز 95% را در قسمت فراخوانی و امتیاز 99% را در قسمت دقت به دست آورد که این نتایج اثبات می کند که این سیستم توصیه گر تا بیش از 90٪ می تواند صفحات موردنظر کاربر را به درستی تشخیص داده و تا حدود زیادی نقاط ضعف سایر سیستم های پیشین را برطرف سازد.
کلید واژگان: سیستم توصیه گر، داده کاوی، الگوریتم DBSCAN، الگوریتم SVM، یادگیری ماشینRecommender systems can predict future user requests and then generate a list of the user's favorite pages. In other words, recommender systems can obtain an accurate profile of users' behavior and predict the page that the user will choose in the next move, which can solve the problem of the cold start of the system and improve the quality of the search. In this research, a new method is presented in order to improve recommender systems in the field of the web, which uses the DBSCAN clustering algorithm to cluster data, and this algorithm obtained an efficiency score of 99%. Then, using the Page rank algorithm, the user's favorite pages are weighted. Then, using the SVM method, we categorize the data and give the user a combined recommender system to generate predictions, and finally, this recommender system will provide the user with a list of pages that may be of interest to the user. The evaluation of the results of the research indicated that the use of this proposed method can achieve a score of 95% in the recall section and a score of 99% in the accuracy section, which proves that this recommender system can reach more than 90%. It detects the user's intended pages correctly and solves the weaknesses of other previous systems to a large extent.
Keywords: Recommender system, data mining, DBSCAN algorithm, SVM algorithm, machine learning -
Due to the growing number of articles and books available on the web, it seems necessary to have a system that can extract users' articles and books from the vast amount of information that is increasing day by day. One of the best ways to do this is to use referral systems. In this research, a method is provided to improve the recommender systems in the field of article recommendation to the user. In this research, DBSCAN clustering algorithm is used for data clustering. Then we will optimize our data using the firefly algorithm, then the genetic algorithm is used to predict the data, and finally the recommender system based on participatory filtering provides a list of different articles that can be of interest to the user. Be him. The results of the evaluation of the proposed method indicate that this recommending system has a score of 94% in the accuracy of the system. And in the call section, it obtained a score of 91%, which according to the obtained statistics, it can be said that this system can correctly suggest up to 90% of the user's favorite articles to the user.Keywords: recommender system, DBSCAN algorithm, Firefly Algorithm, Genetic Algorithm
-
Due to the growing number of videos available on the web, it seems necessary to have a system that can extract users' favorite videos from a huge amount of information that is increasing day by day. One of the best ways to do this is to use referral systems. In this research, a method is provided to improve the recommender systems in the field of film recommendation to the user. In this research, DBSCAN clustering algorithm is used for data clustering. Then we will optimize our data using the cuckoo algorithm, then the genetic algorithm is used to predict the data, and finally, using a recommender system based on participatory refinement, a list of different movies that can be of interest to the user is provided. The results of evaluating the proposed method indicate that this recommender system obtained a score of 99% in the accuracy of the system and a score of 95% in the call section Suggest the user's favorite videos correctly to the user.Keywords: recommender system, DBSCAN algorithm, cuckoo algorithm, Genetic Algorithm, participatory filtering
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.