به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

fault detection

در نشریات گروه فناوری اطلاعات
تکرار جستجوی کلیدواژه fault detection در نشریات گروه فنی و مهندسی
تکرار جستجوی کلیدواژه fault detection در مقالات مجلات علمی
  • Vahid Golmah, Mina Tashakori

    Telecommunication companies have received a great deal of research attention, which have many advantages such as low cost, higher qualification, simple installation and maintenance, and high reliability. However, the using of technical maintenance approaches in Telecommunication companies could improve system reliability and users' satisfaction from Asymmetric digital subscriber line (ADSL) services. In ADSL systems, there are many variables giving some noise for classification and there are many fault patterns with overlapping data. Therefore, this paper proposes a multilayer perceptron (MLP) classifier integrated with Self Organization Map (SOM) models for fault detection and diagnosis (FDD) of occurred ADSL systems. The interest of this paper is to improve the performance of single MLP by dividing the fault pattern space into a few smaller sub-spaces using SOM clustering technique and triggering the right local classifier by designing a supervisor agent. The performances of this method are evaluated on the fault data of Iranian Telecommunication Company which develop ADSL services and then the proposed algorithm is also compared against single MLP. Finally, the results obtained by this algorithm are analyzed to increase user's satisfaction with reducing occurred faults for them with predicting before they face it.

    Keywords: Fault Detection, Diagnosis (FDD), Data mining, Self Organization Map (SOM), multilayer perceptron Artificial Neural Network (MLP-ANN)
  • Vahid Khodashenas Limouni, S.Asghar Gholamian, Mehran Taghipour Gorjikolaie
    The idea of this paper is designing an automatic fault detection system based on fuzzy logic, therefore two signals of PMSM in fault condition are analyzed for inter turn fault detection: current and torque. In this fault type there is some distortion in these signals, but it is not good enough to detecting with fuzzy logic solely, so with combination of wavelet transform and FCM a new method for fault detection is introduced. In this method one detail signal of wavelet transform is chosen and then with FCM it is divided into 6 clusters, these clusters describe the situation of signal truly. Using FCM has two advantages: first in some clusters there had been fault therefore fault was detected, and second it is used for fuzzy logic system to deciding amount and intensity of fault of PMSM. By applying combination of wavelet transform and FCM, designing of fuzzy logic has been more effective, the MFs are directly come from output of FCM, therefore fuzzy logic system have more accurate answer. The output of fuzzy logic that is showed in surface view is based on tree situation that is defined in output MF, and describes whole conditions of PMSM and shows the amount of inter turn fault.
    Keywords: Fault Detection, FCM, Turn to Turn Fault, PMSM, Wavelet Transform
  • Mohammad, Reza Feizi, Derakhshi, Elnaz Zafarani, Moattar, Mohammad, Hossein Feizi, Derakhshi, Masood R.P. Derakhshan, Elnaz Nomi Golzar
    Using signal processing methods for fault detection of machinery is increasing nowadays. Noises added to the signal can negatively effect on efficiency of these methods. Time-domain averaging is a usual method to increase the strength of a signal. But, success of averaging is depends on an assumption which is corresponding points in averaging has same angle on the axle which is called synchronization. A little difference in synchronization can cause more decrease in efficiency of the method. Using tachometer is a usual way for synchronization. But, precision of tachometer isn’t enough. In this paper, as an attempt to solve this problem, a new method based on correlation is proposed for averaging which can synchronise data more precisely. Proposed method has been tested on real data gathered from a five-speed car gearbox. Using real-world data including a lot of components is an advantage of this research. Experimental results shows proposed method can reduce mean squared error from 0.419 to 0.103 in average which is a significant reduce.
    Keywords: Fault detection, Time, domain averaging, synchronization, correlation
  • یک الگوریتم مدیریت خرابی سلسله مراتبی مبتنی بر خوشه بندی برای شبکه های حسگر بی سیم
    شهرام بابایی، احمد خادم زاده، کامبیز بدیع
    بدلیل بکارگیری حسگرها در محیطهای دور از دسترس، عوامل مخرب محیطی و عملیات خرابکارانه دشمن، ایجاد هرگونه خرابی در شبکه های حسگر بی سیم امری اجتاب ناپذیر است. اغلب روش های کشف خرابی مبتنی بر مقایسه محلی، در مواقعی که بیش از نصف گره های همسایه معیوب باشند و علت خرابی گره های شبکه مشترک باشد؛ قادر به شناسایی صحیح حسگرهای معیوب نخواهند بود. لذا در این مقاله یک رویکرد کشف خرابی سلسله مراتبی مبتنی بر خوشه بندی ارائه می شود که شرایطی فراهم می کند تا برای تعیین وضعیت حسگرهای شبکه به مقایسه داده هر حسگر با داده حسگرهای همسایه اکتفا نکرده و با بررسی داده حسگرهای غیر همسایه در لایه بالاتر، تصمیم درستی در مورد وضعیت حسگرها اتخاذ شود. همچنین بدلیل ناکارآمدی رویکردهای کشف خرابی ایستا، یک رویکرد هوشمند به منظور تعیین زمان مناسب برای اجرای الگوریتم پیشنهادی ارائه می شود که بصورت پویا تعداد دفعات اجرای الگوریتم را کاهش و موجب افزایش طول عمر شبکه می شود. نتایج شبیه سازی های انجام شده در نرم افزار متلب حاکی از دقت کشف خرابی بالا و نرخ اخطار نادرست پایین رویکرد پیشنهادی دارد. شبیه سازی ها در چگالی های مختلف و با احتمال های مختلف خرابی و تعداد همسایه های مختلف مورد ارزیابی قرار گرفته و مقیاس پذیر بودن آن و توانایی آن در کشف خرابی اثبات می شود.

    کلید واژگان: شبکه های حسگر بی سیم، تحمل پذیری خرابی، کشف خرابی سلسله مراتبی، دقت کشف خرابی، نرخ اخطار نادرست
    A Hierarchical Cluster-Based Fault Management Approach for Common Mode Failure Diagnosis in Wireless Sensor Networks
    Shahram Babaii, Ahmad Khademzadeh, Seyyed Kambiz Badie
    Inasmuch as sensor nodes are typically used in inaccessible environments, they are vulnerable and insecure against environmental destructive factors and against deliberate devastating attempts of enemies. Hence, fault occurrence in wireless sensor networks (WSNs) is deemed to be an unavoidable phenomenon. The main drawback of comparative fault detection methods are that in case more than half of the neighboring nodes are faulty or the nodes become faulty due to a common mode failure (CMF), they will fail to detect faulty nodes properly. Thus, in order to address this issue, the authors introduced a cluster-based hierarchical fault detection method which increases the influence of non adjacent sensor nodes’ data in determining of sensor’s status. Therefore the proposed method not only compares the data of neighboring nodes but also compares the data of non-neighboring nodes at an upper layer in order to adopt the proper decision upon the status of the nodes. Since applying fault detection methods in determined intervals and static manner are considered as inefficient, in this paper, we put forward an intelligent and dynamic method to determine the appropriate time for the implementation of the fault detection algorithm; hence, the right time and the required number of the implementation of the algorithm are intelligently and dynamically specified and as a result, the network lifetime increases. The related simulations were carried out by means of Matlab software was conducted under different densities of the nodes and with differing probability of being faulty nodes. The simulations results indicated that the fault detection accuracy of the proposed algorithm is significantly high and its false alarm rate is noticeably low. The results obviously demonstrate that the proposed method is scalable.
    Keywords: wireless sensor networks (WSNs), fault tolerance, fault detection, hierarchical fault detection, clustering
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال