جستجوی مقالات مرتبط با کلیدواژه
تکرار جستجوی کلیدواژه hyper rectangle در نشریات گروه فنی و مهندسی
hyper rectangle
در نشریات گروه فناوری اطلاعات
تکرار جستجوی کلیدواژه hyper rectangle در مقالات مجلات علمی
-
یکی از زمینه های فعالیت در یادگیری ماشین و شناسایی الگو یادگیری با ناظر می باشد. در یادگیری با ناظر برچسب داده های آموزشی موجود است. در مسایل دورده ای، هدف محاسبه فرضیه ای است که بتواند به بهترین شکل ممکن و با کمترین مقدار خطا داده های با دو ردهی مثبت و منفی را از یکدیگر جدا کند. انواع روش های یادگیری با ناظر پیشنهاد شده است. به عنوان مثال می توان به درخت های تصمیم، یادگیر SVM و روش های نزدیکترین همسایه اشاره کرد. در این مقاله بر عملکرد درخت های تصمیم متمرکز می شویم. عملکرد درخت تصمیم مشابه پیدا کردن ابرصفحه های تقسیم کننده در فضای d بعدی است، بطوریکه داده های موجود را به درستی رده بندی کند و تا حد ممکن رده بندی صحیح داده های آینده را نیز بدست آورد. دیدگاه هندسی عملکرد درخت تصمیم ما را به مفهوم تفکیک پذیری در هندسه محاسباتی نزدیک می کند. از بین کلیه الگوریتم های تفکیک پذیری موجود، مساله محاسبه مستطیل با حداکثر اختلاف دو رنگ را مطرح می کنیم. این مساله ارتباط نزدیکی با مساله درخت تصمیم در یادگیری ماشین دارد. در ادامه الگوریتم محاسبه مستطیل با حداکثر اختلاف دو رنگ را در یک، دو، سه و d بعد پیاده سازی می کنیم. نتیجه پیاده سازی نشان دهنده آن است که این الگوریتم، الگوریتمی قابل رقابت با الگوریتم شناخته شده C4.5 است.کلید واژگان: یادگیری ماشین، دسته بندی، درخت تصمیم، هندسه محاسباتی، تفکیک پذیری، مستطیلOne of the machine learning tasks is supervised learning. In supervised learning we infer a function from labeled training data. The goal of supervised learning algorithms is learning a good hypothesis that minimizes the sum of the errors. A wide range of supervised algorithms is available such as decision tress, SVM, and KNN methods. In this paper we focus on decision tree algorithms. When we use the decision tree algorithms, the data is partitioned by axis- aligned hyper planes. The geometric concept of decision tree algorithms is relative to separability problems in computational geometry. One of the famous problems in separability concept is computing the maximum bichromatic discrepancy problem. There exists an -time algorithm to compute the maximum bichromatic discrepancy in d dimensions. This problem is closely relative to decision trees in machine learning. We implement this problem in 1, 2, 3 and d dimension. Also, we implement the C4.5 algorithm. The experiments showed that results of this algorithm and C4.5 algorithm are comparable.Keywords: Machine learning, classification, decision trees, computational geometry, separability, Hyper rectangle
نکته
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.