ica algorithm
در نشریات گروه فناوری اطلاعات-
In this research, we discuss the methods that have been proposed so far to solve automatic summarization, in which both single-text and multi-text are summarized with emphasis on experimental methods and text extraction techniques. In multi-text summarization, retrieving redundant information that is readable and coherent and contains maximum information from the original text and minimum redundancy has made research in this field very important. An extraction approach based on several methods for identifying sentence similarities and a meta-heuristic optimization algorithm that has been modified and optimized for faster convergence is presented. In this algorithm, changes are made based on density detection through the probability distribution function to avoid being placed in local optimization and try to search more extensively for the response space. The experimental results obtained from the implementation of the algorithm show that the efficiency on criteria such as ROUGE and the accuracy of the proposed method is effectively increased.
Keywords: Automatic Summarization, Optimization, ICA Algorithm, Single-text, Multi-text -
According to this fact that wind is now a part of global energy portfolio and due to unreliable and discontinuous production of wind energy; prediction of wind power value is proposed as a main necessity. In recent years, various methods have been proposed for wind power prediction. In this paper the prediction structure involves feature selection and use of Artificial Neural Network (ANN). In this paper, feature selection tool is applied in filtering of inappropriate and irrelevant inputs of neural network and is performed on the biases of mutual information. After determining appropriate inputs, the wind power value for the next 24-hours is predicted using neural network in which BP algorithm and PSO and ICA evolutionary algorithms are used as training algorithm. With investigation and compare numerical results, better performance of PSO and ICA evolutionary algorithm is deduced with respect to BP algorithm. More accurate survey will result in more proper efficiency of imperialist competitive algorithm (ICA) in comparison to swarm particle algorithm. Thus, in this paper; accuracy of the wind power prediction for the next 24-hours is improved considerably using mutual information and providing an irrelevancy filter for reducing the input dimension by eliminating the irrelevant candidates and more effectively using Imperialist competitive evolutionary algorithm for training the neural network.Keywords: Neural Networks, Wind Power Prediction, PSO Algorithm, ICA Algorithm, Feature Selection, Mutual Information
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.