k-means algorithm
در نشریات گروه فناوری اطلاعات-
Color image clustering is recognized as a complex challenge in the field of image processing. To improve the results of image clustering, meta-heuristic optimization algorithms can be employed. These algorithms are typically straightforward and can efficiently tackle problems in a short time frame, which offers distinct advantages. However, as the complexity of the problem increases, the solutions derived from these algorithms often fail to represent the optimal solution, resulting in limitations for their practical use. Thus, improving the performance and accuracy of existing algorithms is essential for broadening their applicability. Many meta-heuristic algorithms struggle to maintain an appropriate balance between exploration and exploitation during their update processes, and this issue has not been sufficiently addressed. In this research, we present a novel approach to image clustering. Our method integrates an enhanced Giza Pyramid Construction (GPC) with the Guided Learning Strategy (GLS) and k-means clustering. The GLS strategy assesses the standard deviation of historical positions of individuals across recent generations to evaluate population dispersion and deduce the type of guidance the algorithm requires at any given time. When the algorithm leans towards exploration, this strategy steers it towards exploitation, and vice versa. By identifying and addressing the algorithm’s current needs, this strategy can significantly improve the performance of various optimization algorithms. Furthermore, the Giza Pyramid Construction, inspired by the historical practices of ancient Egypt, mathematically models the behavior of worker groups engaged in constructing large pyramids. We assess the effectiveness of our proposed algorithm in the context of color image clustering and compare the results against several established evaluators that can analyze internal cluster evaluations and inter-cluster distances. Our findings demonstrate that the proposed method achieves superior results compared to other state-of-the-art techniques, based on both objective and subjective evaluation metrics.
Keywords: Image Processing, Color Image Clustering, Giza Pyramid Construction, GLS, K-Means Algorithm -
مدیریت اعتماد مبتنی بر بازخورد کاربران در محیط ابری از اهمیت زیادی برخوردار است. در محیط ابری انتخاب تامین کننده برای کاربران ابر، چالش برانگیز است. این موضوع که آیا انتخاب تامین کننده بر مبنای اولویت های کاربر و پارامترهای ثبت شده تا چه میزان دقیق است به عوامل زیادی بستگی دارد. در مطالعات پیشین چارچوب های زیادی در خصوص نحوه محاسبه اعتمادهای عینی و درونی ارائه شده است. در روش های موجود با استفاده از الگوریتم های جستجوی فاخته، ژنتیک و مگس میوه بهره برده شده است. قالب تحقیقات انجام شده به رتبه بندی، محاسبه پارامترها و یا سرعت محاسبه و میزان دقت در ارزیابی پارامترها پرداخته شده است که معمولا یا در بهینه محلی گیر کرده و یا زمان پاسخ بسیار کند بوده است.در این روش کاهش زمان ارزیابی اعتماد نسبت به الگوریتم های قبلی همچون ژنتیک به دلیل این که پارامتر های کمتری برای تنظیم دارد مشهود است، با تغییر در شعاع تخمگذاری و افزایش بررسی در فضای بیشتری از مسئله، الگوریتم بهینه فاخته نسبت به الگوریتم مرجع، سرعت همگرایی بیشتر، حداقل به میزان 5.9 درصد را دارد. در خصوص میزان دقت دسترسی کاربر به قابل اعتمادترین ارائه دهنده نیز با تغییر در جمعیت و پارامترهایی همچون تعداد فراهم کنندگان، کاربران و تکرار الگوریتم همچنان نتیجه بهتری حاصل شده است. در مجموع، نتایج حاصل شده نشان می دهد،مسئله با استفاده از الگوریتم COA در زمان بسیار کمتر نسبت به سایر الگوریتم ها به نقطه بهینه همگرا می شود و نتیجه ای دقیق تر بدست می آید
کلید واژگان: رایانش ابری، مدیریت اعتماد، بازخورد کاربران، الگوریتم بهینه فاخته، الگوریتم K-MeansCloud computing provides computational services such as servers, memory, storage space, databases, networks, software, analytics, and information as virtualized resources through the internet to offer faster innovation, flexible resources, and cost savings at scale. Although cloud computing service providers are innovatively expanding their services, trust is one of the major obstacles to the progress of this matter. Trust is the biggest issue in cloud computing since trust is an effective guarantor during interactions between the users and the providers. Trust is one of the most fundamental methods for increasing confidence in resources provided in the cloud environment and is important in cloud business environments. With the increasing number of cloud services providers in the cloud computing environment and the number of users, the selection of provider has become a major challenge. The Coa algorithm has a higher convergence speed, at least by 5.9%, compared to the studied algorithms. In this research, an optimization approach based on a metaheuristic process using the COA algorithm combined with the K-means clustering algorithm is proposed to solve the optimization problem of selecting the best provider in the trust management third-party component layer based on parameters. In this method, while reducing trust evaluation time, the accuracy of user access to the most trusted provider based on user priorities has increased compared to previous methods. This can increase user confidence and improve the quality of service providers.
Keywords: Cloud Computing, Trust Management, User Feedback, Cuckoo Optimization Algorithm, K-Means Algorithm -
Journal of Future Generation of Communication and Internet of Things, Volume:2 Issue: 4, Oct 2023, PP 28 -35Epilepsy is a type of brain disease that can be diagnosed by observing EEG signals. The disease often occurs in children. However, some cases are also seen in adults. Diagnosing this disease in the early stages is a challenging task for doctors. In this work, the authors have classified epileptic and normal EEG signal by adopting deep learning approach. To achieve the efficient features, the dual tree complex wavelet (DTCWT) is considered. Then, the decomposed wavelet coefficients are applied to nonlinear feature extraction. These features are used as input to the Radial Hybrid Basis Function (RBF) class. Using the proposed method, about 99% classification accuracy is observed. This requires significant improvement of the proposed algorithm compared to other previously presented algorithms. It is the first time that nonlinear feature extraction on DT-CWT coefficients of an EEG signal is used to diagnose epilepsy.Keywords: epilepsy, k-Means Algorithm, Nonlinear features, radial basis function networks, brain EEG classification, Feature reduction
-
امروزه، خوشه بندی نقش مهمی را در اغلب زمینه های تحقیقاتی مانند مهندسی، پزشکی، زیست شناسی، داده کاوی و... ایفا می نماید. در واقع خوشه بندی به معنای تقسیم بندی بدون نظارت می باشد. داده ها با استفاده از آن به دسته هایی که از نظر پارامترهای موردعلاقه، شباهت بیشتری به یکدیگر دارند، تقسیم می گردند. یکی از روش های معروف در این زمینه k-means می باشد. در این روش علی رغم وابستگی به شرایط اولیه و همگرایی به نقاط بهینه محلی، تعداد N داده به k خوشه با سرعت بالا، دسته بندی می شوند. در این مقاله جهت رفع مشکلات موجود از روش ترکیبی مبتنی بر الگوریتم های تکاملی و تئوری آشوب و k-means بهره گرفته خواهد شد؛ که علاوه بر رفع مشکلات ذکرشده، مستقل از تعداد متغیرها نیز خواهد بود. در این مقاله به منظور اعتبارسنجی، روش های پیشنهادی بر روی 13 مجموعه متفاوت مشهور پیاده سازی می گردد و نتایج با روش های الگوریتم ژنتیک، اجتماع ذرات، کلونی زنبور عسل، تبرید شبیه سازی شده، تکاملی تفاضلی، جستجوی هارمونی و k-means مقایسه خواهند گردید. توانایی بالا و مقاوم بودن این روش ها بر اساس نتایج مشهود خواهد بود.
کلید واژگان: خوشه بندی، الگوریتم K-Means، الگوریتم های تکاملی، آشوب، الگوریتم تکاملی آشوب گونهNowadays, clustering plays an important role in most research fields such as engineering, medicine, biology, data mining, etc. In fact, clustering means unsupervised division. By using it, the data are divided into categories that are more similar to each other in terms of the parameters of interest. One of the famous methods in this field is k-means. In this method, despite the dependence on initial conditions and convergence to local optimal points, N numbers of data are grouped into k clusters with high speed. In this article, to solve the existing problems, the combined method is used based on evolutionary algorithms, chaos theory and k-means; that is in addition to solving the mentioned problems, it will also be independent of the number of variables. In this article, for the purpose of validation, the proposed methods are implemented on 13 different famous collections, and the results are compared with genetic algorithm, particle community, bee colony, simulated refrigeration, differential evolution, harmony search, and k-means methods. The high ability and robustness of these methods will be evident based on the results.
Keywords: Clustering, K-Means Algorithm, Evolutionary Algorithms, Chaos, Chaoticevolutionary Algorithm -
With increasing speed of information and documents on the Web, need to classify them in different categories and clusters to be felt. Clustering try to find related structures in datasets which they are not categorized, yet. Concerning the needs, a new approach for text documents categorization is presented in this paper which included three phases: pre-processing documents and selection feature, K-Means clustering and Naïve Bayes (NB) optimization. The proposed model uses K-Means and NB algorithms that utilize K-Means algorithm to find minimum distances between features from center of clusters and NB algorithm for computing the probability of each feature into documents and using them to clustering features, separately. The proposed model optimizes performance of K-Means algorithm by using NB properties in clustering. Therefore, the model overcomes to the challenges of labeling different documents and origin of K-Means algorithm which it refers to categorizing text documents as un-supervised model. Finally, the experiment results of proposed algorithm and K-Means algorithms are evaluated based on evaluation methods and are compared in validated datasets.Keywords: Text Categorization, Machine Learning, Feature Selection, K-Means Algorithm, Naïve Bayes algorithm
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.