به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

optimization algorith

در نشریات گروه فناوری اطلاعات
تکرار جستجوی کلیدواژه optimization algorith در نشریات گروه فنی و مهندسی
تکرار جستجوی کلیدواژه optimization algorith در مقالات مجلات علمی
  • مجید عبدالرزاق نژاد*، مهدی خرد

    پیش بینی قیمت سهام توسط تحلیلگران داده یک فرصت تجاری بزرگ را برای طیف گسترده سرمایه گذاران در بازار سهام ایجاد کرده است. اما این مهم به دلیل ماهیت بی ثبات و پویایی بیش از حد عوامل متعدد اقتصادی تاثیرگذار بر بازار سهام، امری دشوار است. در این پژوهش به منظور شناسایی ارتباط پیچیده 10 متغیر اقتصادی بر قیمت سهام شرکت های فعال در بازار سهام تهران، دو مدل طراحی و پیاده سازی شده است. نخست یک سیستم استنتاج فازی ممدانی که مجموعه قوانین موتور استنتاج خود را توسط الگوریتم بهینه سازی ازدحام ذرات بدست می آورد طراحی می شود. سپس مدل یادگیری عمیق مشتمل بر 26 نرون در 5 لایه پنهان طراحی شده است. مدل های طراحی شده به منظور پیش بینی قیمت سهام نه شرکت فعال در بورس اوراق بهادار تهران پیاده سازی و نتایج بدست آمده حاکی از عملکرد بهتر مدل یادگیری عمیق بر مدل ترکیب دوگانه استنتاج فازی-ازدحام ذرات و نیز مدل رایج شبکه عصبی دارد. اما قدرت تفسیرپذیری الگوی بدست آمده، رفتار همسانتر و با واریانس به مراتب کمتر و نیز سرعت همگرایی بیشتر نسبت به سایر مدل ها را می توان از مزایای رقابتی قابل توجه مدل ترکیب دوگانه استنتاج فازی-ازدحام ذرات نام برد.

    کلید واژگان: پیش بینی قیمت سهام، سیستم استنتاج فازی، یادگیری عمیق، شبکه عصبی و الگوریتم بهینه سازی ازدحام ذرات
    Majid Abdolrazzagh-Nezhad *, mahdi kherad

    Predicting stock prices by data analysts have created a great business opportunity for a wide range of investors in the stock markets. But the fact is difficulte, because there are many affective economic factors in the stock markets that they are too dynamic and complex. In this paper, two models are designed and implemented to identify the complex relationship between 10 economic factors on the stock prices of companies operating in the Tehran stock market. First, a Mamdani Fuzzy Inference System (MFIS) is designed that the fuzzy rules set of its inference engine is found by the Particle Swarm Optimization Algorithm (PSO). Then a Deep Learning model consisting of 26 neurons is designed wiht 5 hidden layers. The designed models are implemented to predict the stock prices of nine companies operating on the Tehran Stock Exchange. The experimental results show that the designed deep learning model can obtain better results than the hybridization of MFIS-PSO, the neural network and SVM, although the interperative ability of the obtained patterns, more consistent behavior with much less variance, as well as higher convergence speed than other models can be mentioned as significant competitive advantages of the MFIS-PSO model.

    Keywords: : Stock Price Prediction, Fuzzy Inference System, Deep Learning, Neural Networks, Particle Swarm, Optimization Algorith
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال