به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

shuffled frog leaping algorithm (sfla)

در نشریات گروه فناوری اطلاعات
تکرار جستجوی کلیدواژه shuffled frog leaping algorithm (sfla) در نشریات گروه فنی و مهندسی
تکرار جستجوی کلیدواژه shuffled frog leaping algorithm (sfla) در مقالات مجلات علمی
  • سهیلا شفیع زاده، زهرا بهشتی

    مساله ی مسیریابی وسایل نقلیه، یکی از مهم ترین مسایل مدیریت زنجیره ی تامین است، زیرا تخصیص مطلوب وسایل نقلیه تاثیر زیادی بر کاهش هزینه ها دارد. این مساله در دسته مسایل سخت قراردارد و الگوریتم های دقیق کارایی لازم را برای حل آن ندارند. از این رو، می توان از الگوریتم فراابتکاری استفاده کرد که راه حل های خوبی برای حل مسایل سخت ارایه می دهند. یکی از این الگوریتم ها، الگوریتم جهش قورباغه مخلوط شده است که از کارایی بالایی برخوردار است، اما در بعضی مواقع، تنوع جمعیت در آن به دلیل گروه-بندی قورباغه ها به سرعت کاهش می یابد، از این رو در دام بهینه های محلی گرفتار می آید. در این تحقیق، الگوریتم جهش قورباغه مخلوط شده فرد محور ارایه می گردد که از طریق تبادل اطلاعات سراسری و محلی، قابلیت اکتشاف و بهره برداری الگوریتم قورباغه را بهبود می دهد. به منظور ارزیابی الگوریتم پیشنهادی، از مسایل مسیریابی در ابعاد مختلف استفاده می گردد و نتایج آن با چند الگوریتم بهبود یافته جهش قورباغه مخلوط شده، شبیه سازی تبرید و الگوریتم ژنتیک مقایسه می شود. نتایج نشان می دهند که الگوریتم پیشنهادی، از نظر طول مسیر طی شده برای بهترین نتایج، میانگینی برابر با 1130.442 دارد و الگوریتم بعدی شبیه سازی تبرید با میانگینی برابر 1228.725می باشد. سایر الگوریتم ها با اختلاف زیادی در رده های بعدی قرار دارند.

    کلید واژگان: مساله مسیریابی وسایل نقلیه، الگوریتم جهش قورباغه مخلوط شده، هزینه مسیر، جهش، عملگر ترکیب
    Soheila Shafiezadeh, Zahra Beheshti

    The Vehicle Routing Problem (VRP) is one of the most important problems in supply chain management because the optimal allocation of vehicles has a significant impact on reducing costs. VRP is in the class of NP-hard problems and exact algorithms cannot find the best solution in an acceptable time. Hence, meta-heuristic algorithms can be employed to solve it. Shuffled Frog Leaping Algorithm (SFLA) is one of the meta-heuristic algorithms, which is efficient, but in some cases, its population diversity rapidly reduces, and the algorithm falls in local optima. In this study, an Individual-Oriented Shuffled Frog Leaping Algorithm (IO-SFLA) is proposed to enhance the exploration and exploitation of SFLA by exchanging the global and local information. Several VRPs in different dimensions are applied to evaluate the performance of IO-SFLA. The efficiency of IO-SFLA is compared with several improved shuffled frog leaping algorithms, Simulated Annealing (SA) and Genetic Algorithm (GA). The results show that IO-SFLA provides significant results compared with the other competitor algorithms. IO-SFLA achieves an average of 1130.442 for the best path cost. The next rank belongs to SA with an average of 1228.725. Other compared algorithms are in the lower ranks with high differences in results.

    Keywords: Vehicle Routing Problem (VRP), Shuffled Frog Leaping Algorithm (SFLA), Route cost, Mutation, Crossover operation
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال