whale optimization algorithm
در نشریات گروه فناوری اطلاعات-
The Internet has become an important part of many people’s daily activities. Therefore, numerous attacks threaten Internet users. IDS is a network intrusion detection tool used to quickly identify and categorize intrusions, attacks, or security issues in network-level and host-level infrastructure. Although much research has been done to improve IDS performance, many key issues remain. IDSs need to be able to more accurately detect different types of intrusions with fewer false alarms and other challenges. In this paper, we attempt to improve the performance of IDS using Whale Optimization Algorithm (WOA). The results are compared with other algorithms. NSL-KDD dataset is used to evaluate and compare the results. K-means clustering was chosen for pre-processing after a comparison between some of the existing classifier algorithms. The proposed method has proven to be a competitive method in terms of detection rate and false alarm rate base on a comparison with some of the other existing methods.Keywords: Intrusion Detection, Whale Optimization Algorithm, NSL-KDD dataset, K-means Clustering
-
Journal of Advances in Computer Engineering and Technology, Volume:6 Issue: 4, Autumn 2020, PP 227 -238
Clustering is a method of data analysis and one of the important methods in data mining that has been considered by researchers in many fields as well as in many disciplines. In this paper, we propose combining WOA with BA for data clustering. To assess the efficiency of the proposed method, it has been applied in data clustering. In the proposed method, first, by examining BA thoroughly, the weaknesses of this algorithm in exploitation and exploration are identified. The proposed method focuses on improving BA exploitation. Therefore, in the proposed method, instead of the random selection step, one solution is selected from the best solutions, and some of the dimensions of the position vector in BA are replaced We change some of the best solutions with the step of reducing the encircled mechanism and updating the WOA spiral, and finally, after selecting the best exploitation between the two stages of WOA exploitation and BA exploitation, the desired changes are applied on solutions. We evaluate the performance of the proposed method in comparison with other meta-heuristic algorithms in the data clustering discussion using six datasets. The results of these experiments show that the proposed method is statistically much better than the standard BA and also the proposed method is better than the WOA. Overall, the proposed method was more robust and better than the Harmony Search Algorithm (HAS), Artificial Bee Colony (ABC), WOA and BA.
Keywords: Bat algorithm, Whale Optimization Algorithm, Data clustering, Optimization -
An optimal VM Placement in Cloud Data Centers Based on Discrete Chaotic Whale Optimization AlgorithmJournal of Advances in Computer Engineering and Technology, Volume:6 Issue: 4, Autumn 2020, PP 201 -212
Cloud computing, with its immense potentials in low cost and on-demand services, is a promising computing platform for both commercial and non-commercial computation applications. It focuses on the sharing of information and computation in a large network that are quite likely to be owned by geographically disbursed different venders. Energy efficiency in data centers has become a hot topic in recent years as more and larger data centers have been established and the electricity cost has become a major expense for operating them. Server consolidation using virtualization technology has become an important technology to improve the energy efficiency of data centers. Virtual machine placement is the key in server consolidation. In the past few years, many approaches to virtual machine placement have been proposed, but existing virtual machine placement approaches to the virtual machine placement problem consider the energy consumption by physical machines. In this paper, we proposed a new approach for placement based on Discrete Chaotic whale optimization Algorithm. First goal of our presented algorithm is reducing the energy consumption in datacenters by decreasing the number of active physical machines. Second goal is decreasing waste of resources and management of them using optimal placement of virtual machines on physical machines in cloud data centers. By using the method, the increase in migration of virtual machines to physical machines is prevented. Finally, our proposed algorithm is compared to some algorithms in this area like FF, ACO, MGGA, GSA, and FCFS.
Keywords: power consumption, resource management, virtualization, Whale Optimization Algorithm -
Following the development of wireless sensor networks, the need to design a low-waste, scalable, and long-life network is felt more than ever. Clustering and routing are widely used to minimize energy consumption and increase network lifetime, as important issues in wireless sensor networks. Since, in these networks, the largest amount of energy is spent on sending and receiving the data, the clustering technique done by collecting data on cluster heads has been found to influence the overall network performance; along with this, routine and efficient routing has also found to improve the network throughput. Therefore, multi-hop routing can increase the network lifetime and reduce the energy consumption by sensor nodes. In this paper, the main approach was using the mobile sinks attached to the public transportation vehicles, such as the bus to collect data in wireless sensor networks. The proposed protocol used multi-hop routing as well as Whale Optimization Algorithm to select cluster heads based on a fitness function, in which the amount of the remaining energy of the sensor nodes and the sum of the remaining energy of the adjacent sensor nodes were taken into account. Adopting this approach created a balance in the amount of energy consumption in sensor nodes. The proposed protocol was studied to validate the results obtained for the network lifetime and energy consumption. Independent and consecutive simulation results and statistical analysis indicates the superiority of the proposed protocol compared to other protocols. Also, the network lifetime improved by averagely 20% and the energy consumption reduced about 25% during the network activity.
Keywords: lifetime, Data Collection, Whale Optimization Algorithm, Clustering, Wireless Sensor Networks -
بخش بندی تصاویر رنگی چهره یک مرحله ی ضروری در کاربردهای پردازش تصویر و بینایی کامپیوتر نظیر شناسایی چهره، شناسایی هویت و آنالیز جراحی های پلاستیک چهره است. یکی از مهم ترین روش های بخش بندی تصاویر چهره، روش های مبتنی بر خوشه بندی است. خوشه بند فازی (FCM) یک الگوریتم موثر در بخش بندی تصویر بوده، ولی حساسیت به مقدار اولیه ممکن است باعث شود که این الگوریتم در کمینه مکانی بیافتد. به منظور غلبه بر این مسیله، الگوریتم های فرا-ابتکاری شامل بهینه سازی گرگ خاکستری (GWO) و الگوریتم بهینه سازی نهنگ (WOA) به کار گرفته شده اند. بنابراین، تمرکز اصلی این مقاله بر روی عمل کرد الگوریتم های فرا-ابتکاری در بهینه سازی خوشه بند فازی و کاربرد آن در بخش بندی تصاویر رنگی چهره است. تابع هدف خوشه بند FCM به عنوان یک تابع برآزندگی برای الگوریتم های فرا-ابتکاری درنظر گرفته می شود. این الگوریتم n بردار را به C گروه فازی تقسیم کرده و مرکز خوشه بندی را برای هر گروه محاسبه می کند. همچنین، در این مطالعه سه فضای رنگی چهره شامل YCbCr، YPbPr و YIQ به عنوان داده های ورودی در بهینه سازی تابع برازندگی به کار گرفته شده اند. پس از بیشینه کردن تابع عضویت، بخش بندی تصاویر رنگی چهره بر روی سه پایگاه داده شامل (1) پایگاه داده دانشگاه صنعتی سهند (SUT)، (2) پایگاه داده MR2 و (3)پایگاه داده SCUTFBP انجام شده است. نتایج بخش بندی نشان می دهند که عمل کرد الگوریتم های GWO و WOA در بخش بندی تصاویر رنگی چهره نسبت به سایر الگوریتم های فرا-ابتکاری نظیر الگوریتم ژنتیک (GA)، بهینه سازی ازدحام ذرات (PSO)، الگوریتم بهینه سازی ملخ (GOA) و الگوریتم جستجوی کلاغ (CSA) بهتر بوده و همچنین دارای عمل کرد مناسبی نیز در سرعت همگرایی هستند.کلید واژگان: الگوریتم بهینه سازی نهنگ، الگوریتم های فرا-ابتکاری، بخش بندی تصویر، بهینه سازی گرگ خاکستری، تصاویر رنگی چهره، خوشه بند فازیSegmentation of facial color images is an essential step in the image processing and computer vision applications, such as face recognition, identity recognition, and analysis of facial plastic surgeries. One of the most important methods of facial image segmentation is clustering-based methods. The fuzzy c-means (FCM) clustering is an effective method in the image segmentation, but its sensitivity to initial values may cause that this algorithm fall and stuck into the local minima. To overcome this problem, the meta-heuristic algorithms, including Grey Wolf Optimization (GWO) and Whale Optimization Algorithm (WOA) have been used. Therefore, the main focus of this study is on the performance of the meta-heuristic algorithms in optimizing the FCM algorithm and their applications in the segmentation of facial color images. The objective function of the FCM algorithm is considered as a fitness function for meta-heuristic algorithms. This algorithm divides n vectors into C fuzzy groups and calculates the cluster center for each group. Also in this study, three color spaces (1) YCbCr, (2) YPbPr, and (3) YIQ have used as input data in optimization of the fitness function. After maximization of the membership function, segmentation of facial color images has been done on three database including, (1) Sahand University of Technology (SUT), (2) MR2, and (3) SCUTFBP. The result of segmentation show that convergence speed of the GWO and WOA methods is faster than other meta-heuristic algorithm, such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Crow Search Algorithm (CSA), and Grasshopper Optimization Algorithm (GOA) and have a suitable performance in facial image segmentation.Keywords: Whale Optimization Algorithm, meta-heuristic algorithms, Image Segmentation, Grey Wolf Optimization, Facial Color Images, Fuzzy c-means clustering
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.