auto encoder
در نشریات گروه مکانیک-
International Journal of Reliability, Risk and Safety: Theory and Application, Volume:5 Issue: 2, Dec 2022, PP 107 -116
This paper presents a comprehensive framework for enhancing the safety and reliability of quadrotor UAVs by integrating second-order sliding mode control (2-SMC) and an advanced anomaly detection and prediction system based on machine learning and AI. The paper addresses the challenges of designing controllers for quadrotors by proposing a novel sliding manifold approach divided into two subsystems for accurate position and attitude tracking. The paper also provides a detailed analysis of the nonlinear coefficients of the sliding manifold using Hurwitz stability analysis. It demonstrates the effectiveness of the proposed method through extensive simulation results. To further assess the safety and reliability of the quadrotor, an anomaly detection and prediction system is integrated with the position and attitude tracking control. The system utilizes machine learning and AI techniques to identify and predict abnormal behaviours or faults in real time, enabling the quadrotor to quickly and effectively respond to critical situations. The proposed framework provides a promising approach for designing robust and safe controllers for quadrotor UAVs. It demonstrates the potential of advanced machine learning and AI techniques for enhancing the safety and reliability of autonomous systems.
Keywords: Anomaly detection, Auto-encoder, Fault detection, Machine learning, Quadrotor UAVs, Safety, second-order sliding mode control (2-SMC)
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.