genetic algorithm (ga)
در نشریات گروه مکانیک-
Journal of Modern Processes in Manufacturing and Production, Volume:13 Issue: 4, Autumn 2024, PP 59 -81
This study investigates using composite patch connections to repair cracked composite sheets under tensile stress. Finite element analysis was employed to model and analyze the behavior of the cracked composite sheet in three scenarios: without a patch, with a one-sided patch, and with a two-sided (symmetric) patch. The primary objective was to examine the influence of the composite patch material on the stress distribution, crack growth strain, and overall performance of the repaired sheet. An optimization approach was also developed to design the multilayer composite patch connection with the lowest weight and cost while withstanding the highest possible load. Two optimization algorithms, the Genetic Algorithm and the Colonial Competitive Algorithm, were implemented and compared in this regard. The results demonstrate that using a symmetric, two-sided composite patch connection effectively reduces crack growth and enhances the strength of the repaired sheet. Furthermore, the optimization analysis revealed that the Colonial Competitive Algorithm provided superior performance to the Genetic Algorithm in identifying the optimal design parameters for the composite patch connection. This study contributes to understanding crack behavior in composite sheets and developing cost-effective, weight-efficient repair solutions using composite patch connections. The findings can inform the design and implementation of composite repair techniques in various engineering applications.
Keywords: Composite Sheet, Crack Repair, Composite Patch Connection, Genetic Algorithm (GA), Colonial Competitive Algorithm (CCA) -
In this article, the optimal robust H2 / H∞ control of self-driving car platoons (SDCPs) under external disturbance is investigated. By considering the engine dynamics and the effects of external disturbance, a linear dynamical model is presented to define the motion of each self-driving car (SDC). Each following SDC is in direct communication with the leader. By utilizing the relative position of following SDCs and the leader, the error dynamics of each SDC is calculated. The particle swarm optimization (PSO) method is utilized to find the optimal control gains. To this aim, a cost function which is a linear combination of H2 and H∞ norms of the transfer function between disturbance and target variables is constructed. By employing the PSO method, the cost function will be minimized and therefore, the robustness of the controller against external disturbance is guaranteed. It will be proved that under the presented robust control method, the negative effects of disturbance on system performance will significantly reduce. Therefore, the SDCP is internally stable and subsequently, each SDC tracks the motion of the leader. In order to validate the proposed method, simulation examples will be presented and analyzed.
Keywords: H2, H∞ norms, Optimal robust controller, Genetic algorithm (GA), Disturbance, stability -
در پژوهش حاضر تحلیل اولیه سازه دیسک دوار مورد استفاده در یک موتور توربینی هوایی و بهینه سازی هندسه آن جهت رسیدن به کمترین جرم در کنار اطمینان مناسب انجام شده است. دیسک مورد بحث همگن و تحت بارگذاری های مکانیکی و حرارتی قرار دارد. جهت تحلیل ترموالاستیک دیسک مفروض روابط حاکم با فرض شرایط تنش صفحه ای استخراج و به کمک نرم افزار محاسباتی متلب تحلیل شده است. به منظور بهینه سازی هندسه از روش های بهینه سازی گرادیانی شمارشی (CSA) و غیر گرادیانی الگوریتم ژنتیک (GA) و الگوریتم کلونی زنبور عسل مصنوعی (ABC) استفاده شده است. مقایسه نتایج به ترتیب نشان دهنده کاهش 49/36، 51/39 و 43/36 درصدی جرم اولیه دیسک با روش های بهینه سازی مورد استفاده است. همچنین زمان تقریبی لازم جهت رسیدن به نتایج بهینه سازی در این روش ها به ترتیب برابر با 3500، 120 و 100 دقیقه بوده است. نتایج نشان می دهند که بیشترین میزان بهبود نتایج مربوط به روش غیرگرادیانی الگوریتم GAاست. همچنین سرعت همگرایی در روش های غیرگرادیانی الگوریتم GAو ABC در حدود 30 تا 35 برابر بیشتر از روش CSA است. در نتیجه با توجه به زمان بر بودن تحلیل های گرادیانی اهمیت روش های غیر گرادیانی در صرفه جویی زمان و هزینه های محاسباتی نیز بیشتر نمایان شده و با توجه به نتایج استفاده از روش GA به عنوان یک روش دقیق و با سرعت مطلوب در بهینه سازی مسایل دوار در معرض بارگذاری های ترموالاستیک پیشنهاد شده است.
کلید واژگان: دیسک دوار، بهینه سازی غیر گرادیانی و گرادیانی، الگوریتم ژنتیک، الگوریتم کلونی زنبور عسل مصنوعیThis paper presents the initial structural analysis and geometric optimization of a rotating disk used in an aircraft turbine engine. The disk is homogeneous and subject to mechanical and thermal loads. The governing equations for the thermoelastic analysis of the assumed disk were derived under the assumption of plane stress conditions and subsequently analyzed using the MATLAB computational software. Three different optimization methods were implemented for the geometric optimization of the rotating disk: The Counting Sort Algorithm (CSA), the non-gradient Genetic Algorithm (GA), and the Artificial Bee Colony algorithm (ABC). The optimization methods resulted in a reduction of the disk mass by 36.49%, 39.51%, and 36.43%, respectively. Also, the approximate time required to reach the optimization results was 3,500, 120, and 100 minutes, respectively. The results show that the non-gradient genetic algorithm (GA) method has the greatest improvement in results. The convergence speed of the non-gradient GA and ABC methods is also about 30 to 35 times faster than the CSA method. As a result, the importance of non-gradient methods in saving time and computational costs has become more evident, due to the time-consuming nature of gradientbased analyses. Based on the results, the use of the GA method has been proposed as an accurate and efficient method for the optimization of rotating problems under thermoelastic loading.
Keywords: Rotating disk, Gradient, non-gradient optimization, Counting SortAlgorithm (CSA), Genetic Algorithm (GA), Artificial Bee Colony (ABC) -
Iranian Journal of Mechanical Engineering Transactions of ISME, Volume:22 Issue: 2, Sep 2021, PP 21 -37Acoustic scaling is one of the efficient techniques for measuring acousticparameters of large and luxury places. Due to the range of acousticscaling frequency, an airborne ultrasonic transducer has been used fortransporting the power to the air. One major problem of ultrasonictransducers, radiating acoustic energy into the air, is to find the properacoustic impedance of one or more matching layers. This work aims atdeveloping an original solution to the acoustic impedance mismatchbetween transducer and air. Therefore we consider three piezoelectrics,PZT, PVDF, and EMFi transducers and air that have high acousticimpedance deference. We proposed the use of a genetic algorithm (GA) toselect the best acoustic impedances for matching layers from the materialdatabase for a narrow band ultrasonic transducer that works at afrequency below the 1MHz by considering attenuation. This yields ahighly more efficient transmission coefficient. Also, the results showedthat by using the increasing number of layers we can increase our chanceto find the best sets of materials with valuable both in acoustic impedanceand low attenuation. Precisely, the transmission coefficient is almosthigher than 80% for the more studied cases.Keywords: acoustic impedance, matching layers, Ultrasonic transducers, Genetic algorithm (GA), PZT, PVDF, EMFi
-
در این مقاله فاز نهایی عملیات ملاقات و اتصالمداری مورد مطالعه قرار گرفته است. هدف اصلی، کنترل موقعیت فضاپیمای تعقیب کننده می باشد به گونه ای که این فضاپیما در سریع ترین زمان ممکن یا به عبارت دیگر با پیمودن یک مسیر بهینه به فضاپیمای هدف برسد.از دیگرمقاصد این مقاله، حداقل مصرف انرژی می باشد. در شبیه سازی دینامیک از معادلات کلوزی ویلشایر خطی استفاده شده است.درمجموعه معادلات کلوزی ویلشایرخطی،تغییر در هر یک از دو راستای X یا Yمنجر به تغییر راستای دیگر شده و بر روی عملیات اتصال تاثیر خواهد گذاشت. برای دست یابی به اهداف، متغیرهای موجوددر مسئله باید بهینه شوند. جهت بهینه سازی متغیرها از دو روش الگوریتم ژنتیک و ازدحام ذرات بهره گرفته شده است. فضاپیمایتعقیب کنندهدارای عملگرهای تراستر با ساختار مدولاتور PWPFدر نظر گرفته شده واتصال به یک فضاپیماباموقعیت ثابت، هدف اصلی مسئله است.روش کنترلی مورد استفاده روش LQRبوده که پارامترهای آن نیز جزءمتغیرهایی هستند که بهینه خواهند شد.در نهایتبرای ارزیابی شرایط واقعی، با اعمال عدم قطعیت بر روی خروجی تراسترها نتایج بررسی می گردند.کلید واژگان: کنترل بهینه، تراستر، دینامیک موقعیت، الگوریتم ژنتیک، ازدحام ذراتThe final phase of orbital rendezvous and docking has been studied in this article. The main objective is to control the position of a chaserthat can reach to the target in the minimum time, or in the other words, by passing the optimal path.Another important objective of this paper is the minimum energy consumption. In dynamic simulation, the equations of the linear form of Clohessy-Wiltshire (CWH) equationshave been utilized. In linear CWH equations, the change in either direction of X or Y will result the change in another direction and will affect the orbitaldocking operation. Inorder to achieve the objectives of this paper, the design variables should be optimized; To optimize the design variables, two methods i.e. genetic algorithm (GA) and particle swarm optimization (PSO) have been used. Finally, to evaluate the real conditions, the results will be investigated by applying uncertainty in the outputs of thrusters.Keywords: Optimal control, Thruster, Position Dynamics, Genetic algorithm (GA), Particle Swarm Optimization (PSO)
-
International Journal of Advanced Design and Manufacturing Technology, Volume:12 Issue: 2, Jun 2019, PP 27 -37Controlling of the quadrotor has been noted for its trouble as the consequence of exceeds nonlinear system, strong coupled multivariable and external disturbances. Quadrotor position and attitude is controlled by several methodologies using feedback linearization, but when quadrotor works with unstructured inputs (e.g. wind disturbance), some limitations of this technique appear which influence flight work. Design control system with fast response, disturbance rejection, small error, and stability is the main objective of this work. So in this paper we can make use of new methods of control to design a controller of nonlinear robust with a reasonable performance to test the impact of wind disturbance in quadrotor control such as Fuzzy-PID controller and compared its results with the others four controllers which are PID tuned using GA, FOPID tuned using GA, ANN and ANFIS then discus which controller give the best results in the presence and absence of wind disturbance. The main objective of this paper is that performance of the designed control structure is computed by the fast response without overshoot and minim error of the position and attitude. Simulation results, shows that position and attitude control using FOPID has fast response and better steady state error and RMS error than Fuzzy-PID, ANFIS, ANN and PID tuned using GA without impact of wind disturbance but after impact of wind disturbance it was observed using Fuzzy-PID has fast response with minimum overshoot and better steady state error and RMS error than the other four controllers used in the paper and compared with most of literature reviews which didn't give the adequate results contrasted with the required position and attitude. The all controllers are tested by simulation under the same conditions using SIMULINK under MATLAB2015a.Keywords: Adaptive Neuro Fuzzy Inference System (ANFIS), Artificial Neural Network (ANN), Fuzzy-PID, Fractional Order PID (FOPID), Genetic Algorithm (GA), Proportional Integral Derivative (PID) Controller, Quadrotor
-
In this paper, a new optimization method coupling genetic algorithm (GA) and computational fluid dynamics (CFD) based on Windows Socket was found to optimize the configurations of porous insert in a tube for heat transfer enhancement. The region in the enhanced tube was divided into several layers in the radial direction. The porosity of porous media filled in each layer was the design variable, which varies from 0.5 to 1.0. The results show that the thermo-hydraulic performance of the enhanced tube can be improved effectively by using the optimized porous insert, particularly using the optimized multiple layers of porous insert. However, there is an appropriate layer number of porous insert to ensure the optimal performance of the enhanced tube for a given set of parameters.Keywords: Heat transfer enhancement, Porous insert, Genetic algorithm (GA), Computational fluid dynamics (CFD), Optimization
-
در این مقاله بهینه سازی چندهدفه خنک کاری لایه ای یک ردیف از سوراخ های خنک کاری پره توربین یک موتور خاص به صورت سه بعدی بررسی شده است. هدف این مقاله مقایسه کارایی خنک کاری لایه ای و نرخ جریان جرمی خنک کاری است که این دو تابع هدف از نظر نقطه اثر عکس هم می باشند. برای این منظور رقابت بین این دو مورد بررسی شده و موقعیت سوراخ های خنک کاری در جهت وتر، به همراه قطر و زاویه تزریق به عنوان پارامترهای طراحی انتخاب شده اند. سپس 30 نمونه به عنوان داده اولیه از تحلیل دینامیک سیالات محاسباتی ایجاد و از روش شبکه عصبی مصنوعی برای ایجاد مدل جایگزین به منظور تقریب تابع بهینه سازی پارامترهای طراحی و از الگوریتم ژنتیک برای بهنیه سازی مدل استفاده شده است. الگوی طراحی در الگوریتم ژنتیک، شش مرتبه به تناوب تکرار شده و مدل بهینه برای تابع هدف به دست آمده است. در نهایت موقعیت بهینه سوراخ های خنک کاری نزدیک LE با قطر و زاویه تزریق به ترتیب 0/447 و 73/575 به دست آمد. مقایسه نتایج CHT هندسه پره بهینه شده با هندسه اولیه نتایج بهینه سازی را تایید می کند و نشان می دهد که به کاهش چشمگیر توزیع دمایی روی ایرفویل منجر شده است.کلید واژگان: بهینه سازی چندهدفه، الگوریتم ژنتیک، شبکه عصبی مصنوعی، خنک کاری لایه ای، پره توربین گاز، حل ترکیبی، دینامیک سیالات محاسباتیIn this paper, the optimum parameters of a row of cylindrical film cooling holes has been investigated using a multi-objective evolutionary approach so as to achieve a compromise between film cooling effectiveness and coolant massflow rate which are in opposite directions and compete with each other. For this purpose, chordwise position of film holes, as well as diameter and injection angles were chosen as design parameters. Thirty samples were generated as database through CFD runs and artificial neural network (ANN) method was used to construct the surrogate model to approximate the optimization targets as functions of design parameters and genetic algorithm (GA) was used as optimizer. Design iterations were repeated 6 times and optimum configuration resulted in objective function values was found.Keywords: multi-objective optimization, genetic algorithm (GA), artificial neural network (ANN), film cooling, turbine blade, conjugate heat transfer (CHT), Computational fluid dynamics (CFD)
-
On the dynamic stability of a flying vehicle under the follower and transversal forcesThis paper deals with the problem of the instability regions of a free-free uniform Bernoulli beam consisting of two concentrated masses at the two free ends under the follower and transversal forces as a model for a space structure. The follower force is the model for the propulsion force and the transversal force is the controller force. The main aim of this study is to analyze the effects of the concentrated masses on the beam instability. It is determined that the transverse and rotary inertia of the concentrated masses cause a change in the critical follower force. This paper also offers an approximation method as a design tool to find the optimal masses at the two tips using an artificial neural network (ANN) and genetic algorithm (GA). The results show that an increase in the follower and transversal forces leads to an increase of the vibrational motion of the beam which is not desirable for any control system and hence it must be removed by proper approaches.Keywords: Beam instability, Follower force, Vibration analysis, Artificial neural network (ANN), Genetic algorithm (GA)
-
The purpose of this paper is multi-objective optimization of refrigeration cycle by optimization of all components of the cycle contains heat exchangers, air condenser, evaporator and super-heater. Studied refrigeration cycle is compression refrigeration cycle of unit 132 Third refineries in south pars that provide chilled water for cooling refinery equipments. Cycle will be performed by the genetic algorithm optimization. Thermodynamic purpose of the cycle Expressed by minimization of Exergy destruction or maximization or coefficient of performance (C.O.P), economic purpose of the cycle Expressed by minimization of cold water production cost by TRR method and environmental purpose of the cycle Expressed by minimization of NOx, CO2 and CO Which is produced by power consumption. Combination of objectives and decision variables with suitable engineering and physical constraints makes a set of the MINLP optimization problem. In EES software. Optimization programming is performed using NSGA-II algorithm. Four optimization scenarios including the thermodynamic single-objective, the economic single-objective, environmental single-objective by power electricity consumption and multi-objective optimizations are performed. The output of the multi-objective optimization is a Pareto frontier that yields a set of optimal points that the final optimal solution has been selected using two decision-making approaches including the LINMAP and TOPSIS methods.. It was shown that the best results in comparison to the simple cycle reduction in Exergy destruction from 264.8 kW to 127.6 kW(Increased coefficient of performance from 3.872 to 7.088), reduction in cold water production cost from 117.5 dollar/hour to 87.19 dollar/hour and reduction in NOx emission from 4958 kg/year to 2645 kg/year.Keywords: Compression Refrigeration Cycle, Multi, Objective Optimization, Genetic Algorithm (GA), TOPSIS, LINMAP Decision, Making
-
Wind power has been widely considered in recent years as an available and a clean renewable energy source. The cost of wind energy production is currently the main issue, and increasing the size of wind turbines can reduce wind energy production costs. Hence, megawatt wind turbines are being rapidly developed in recent years. In this paper, an aerodynamic analysis of the NREL 5MW turbine is carried out using the modified blade element momentum theory (BEM). The genetic algorithm (GA) as an optimization method and the Bezier curve as a geometry parameterization technique are used to optimize the original design. The modified BEM results are compared with the NREL published results for verification. Cost of energy (COE) is considered an objective function, which is one of the most important and common choices of objective function for a megawatt wind turbine. Besides, the optimization variables involve chord and twist distributions variation along the blade span. The optimal blade shape is investigated for the minimum cost of energy with considered constant rotor diameter and airfoil profiles. Then the objective function is improved and a new optimum geometry is compared with the original geometry. Although the Annual Energy Production and rated power are reduced by 2% and 3% respectively, the net cost of wind energy production is decreased by 15%, showing the importance of such optimization studies.Keywords: Aerodynamic Optimization, Megawatt Wind Turbine, Blade Element Momentum Theory (BEM), Genetic Algorithm (GA), Bezier Curve, Cost Of Energy (COE)
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.