به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

local binary pattern

در نشریات گروه مکانیک
تکرار جستجوی کلیدواژه local binary pattern در نشریات گروه فنی و مهندسی
تکرار جستجوی کلیدواژه local binary pattern در مقالات مجلات علمی
  • Mohammadreza Asadi-Gandomani *, Seyedeh Sogand Hashemi, Mohammad Taghi Sadeghi
    For decades, plastic components have been the main parts of products in industries such as food, pharmaceutical, automotive, etc. Generally, these components are created by injection molding machines. Using these machines, raw materials are converted to plastic parts, e.g., bottle caps, dosing spoons, and bumpers. The part of the machine that provisionally holds plastic products is called “Mold” which has a unique form for each product. Since molds are sensitive components with high prices, appropriate care is required. When mold is used as the dynamic part of the machine, it’s a high potential for damages due to incomplete product ejection. Utilizing an automated inspection system is a modern solution to prevent possible problems. In this paper, we propose an intelligent system based on machine vision that consists of image capturing, processing, and classification sections. In the processing section, we have used a novel modified Local Binary Pattern algorithm which leads to the suitable features for classifying images into two categories. To achieve the best classifier, four potent machine learning-based methods are evaluated: KNN, SVM, Random Forest, and Gradient Boosting. This evaluation is based on criteria like F1-score, training and processing time, and the experimental results claim that the SVM method is the best classifier with 11.87ms training time, 9.04us processing time, and F1-Score of 0.96.
    Keywords: Classification Methods, Injection Molding, Inspection Systems, Local binary pattern, Machine Learning, Machine Vision
  • Mohammadreza Asadi-Gandomani *, Seyedeh Sogand Hashemi, MohammadTaghi Sadeghi

    For decades, plastic components have been the main parts of products in industries such as food, pharmaceutical, automotive, etc. Generally, these components are created by injection molding machines. Using these machines, raw materials are converted to plastic parts, e.g., bottle caps, dosing spoons, and bumpers. The part of the machine that provisionally holds plastic products is called “Mold” which has a unique form for each product. Since molds are sensitive components with high prices, appropriate care is required. When mold is used as the dynamic part of the machine, it’s a high potential for damages due to incomplete product ejection. Utilizing an automated inspection system is a modern solution to prevent possible problems. In this paper, we propose an intelligent system based on machine vision that consists of image capturing, processing, and classification sections. In the processing section, we have used a novel modified Local Binary Pattern algorithm which leads to the suitable features for classifying images into two categories. To achieve the best classifier, four potent machine learning-based methods are evaluated: KNN, SVM, Random Forest, and Gradient Boosting. This evaluation is based on criteria like F1-score, training and processing time, and the experimental results claim that the SVM method is the best classifier with 11.87ms training time, 9.04us processing time, and F1-Score of 0.96.

    Keywords: Classification Methods, Injection Molding, Inspection Systems, Local binary pattern, Machine Learning, Machine Vision
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال