به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

Mechanical Properties

در نشریات گروه مواد و متالورژی
تکرار جستجوی کلیدواژه Mechanical Properties در نشریات گروه فنی و مهندسی
  • A. Jafary Shalkoohy *, N. Fallah, P. Eshghi
    Due to the environmental pollution caused by the production and consumption of cement, the demand for new and environmentally friendly methods to improve and strengthen the soil is increasing. In addition, reinforcing the soil with steel fibers improves the mechanical properties, including the formability and bearing capacity of the soil. The purpose of this research is to evaluate the effect of zeolite on the behavior of cemented sand soil reinforced with steel fibers. In the following, the unconfined compressive strength (UCS) test was used to check the compressive strength, and the flexural strength (FT) test was used to check the flexural. It should be mentioned that to improve the soil from cement in the amount of 5% by weight, zeolite in the amount of 0, 25, 50, 75 and 100% was used instead of cement, as well as steel fibers in the amount of 2% and random distribution in the curing of 28-day. In the results of unconfined compressive strength tests, the best replacement percentage of zeolite instead of cement in sandy soil was 25%, which initiated an increase in unconfined compressive strength and an increase in the failure strain of the sample. In the results of flexural strength tests, 25% of zeolite to replace cement in sandy soil affected the greatest increase in flexural strength and increased soft behavior. In addition, with the addition of steel fibers, the samples endured much more displacements than those without fibers.
    Keywords: Soil Improvement, Steel Fibers, Zeolite, Cement, Mechanical Properties
  • A.A. Abedini, H. Rastegari, S.M. Emam *, S.M.H. Seyedkashi
    Quenched and partitioned (Q&P) steels represent a new generation of advanced high-strength steels, characterized by their excellent combination of strength and ductility. The high ductility of Q&P steels is attributed to their unique micro-composite microstructure, consisting of a martensitic matrix and 10-15% residual austenite. This research aims to determine the process parameters and investigate their effect on the ultimate tensile strength, yield strength, total elongation, reduction of area, and hardness of 1.7102 silicon medium carbon steel specimens subjected to quenching and partitioning processes. A full factorial design of experiments (DOE) was obtained using Minitab software for statistical analysis of the results. First, the normality of data was validated, and the main effects and interactions were analyzed through analysis of variance (ANOVA). The findings reveal that quenching temperature, partitioning time, and their interaction had a significant effect on the response.
    Keywords: Quenching, Partitioning, 1.7102 Steel, Mechanical Properties, Analysis Of Variance
  • R. Ebrahimi

    The “Iranian Journal of Materials Forming (IJMF)” is an international open access journal in the fields of materials deformation and forming processes, which was established at Shiraz University in 2014. The journal welcomes submission from scientists and engineers from scientists and engineers in both academic and industrial sectors, covering all manufacturing processes. Additionally, the journal addresses various forms of material deformation, including elastic and plastic behaviors, as well as deformations caused by failure. The journal’s quality and credibility are upheld by a distinguished editorial board, featuring some of the world’s most renowned professors. Furthermore, the diverse group of referees selected for the journal underscores its scientific rigor. We are proud to announce that, for the fourth consecutive year, the journal has been successfully published quarterly, with the fourth issue of 2024 having been released.

    Keywords: Mechanical Properties, Plastic, Elastic
  • R. Ebrahimi

    The “Iranian Journal of Materials Forming (IJMF)” is an international open access journal in the fields of materials deformation and forming processes, which was established at Shiraz University in 2014. The journal is pleased to receive papers from scientists and engineers from academic and industrial areas related to all manufacturing processes. In addition, all deformations, including the elastic and plastic behaviors of materials and deformations due to failure, are part of this journal's field of interest. The quality and credibility of the journal have been ensured by appointing some of the most well-known professors in the world as members of its editorial board. In addition, the wide range of the selected referees in this issue is a sign of its scientific quality. It is a matter of pride that for the fourth year this journal has been successfully released quarterly and the third issue of the year was published in 2024.

    Keywords: Deformation, Plastic, Mechanical Properties
  • Mohammadsadegh Abdi Maghsoudlou *, Touradj Ebadzadeh, Alireza Aghaei

    This paper explores α/β-SiAlON composites, known for their exceptional mechanical and thermal properties, fabricated using spark plasma sintering (SPS). Novel reagents were initially introduced for the mechanochemical synthesis of precursors essential for producing α- and β-SiAlON phases via the carbothermal process. The prepared precursors were combined with active carbon in stoichiometric ratios and heated in a nitrogen (N₂) atmosphere for two hours. Characterization techniques, including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FE-SEM), confirmed the successful synthesis of SiAlON phases at 1500°C, revealing a range of morphologies.The results demonstrate that all composites sintered through the SPS process achieve complete densification at 1800°C. Mechanical properties, such as hardness and fracture toughness, are influenced by the ratios of α- and β-SiAlON phases. A composition of 70% β-SiAlON and 30% α-SiAlON exhibited optimal results, achieving a fracture toughness of 4.67 MPa•m¹/² and a hardness of 17.32 GPa, comparable to commercial samples produced using alternative raw materials.

    Keywords: Sialon Composites, Novel Precursors, Spark Plasma Sintering, Carbothermal Reduction, Nitridation Process, Mechanical Properties
  • Shahaboddin Kharazmi *, Sanaz Alamdari
    This study systematically examined the incorporation of graphene oxide (GO) and silver nanoparticles (Ag NPs) into chitosan (CS) films (CS-GO/Ag) to understand their impact on structural, mechanical, and electrical properties. X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) confirmed the successful integration of GO and Ag NPs into the chitosan matrix. The XRD patterns revealed the presence of GO and silver nanoparticles, with peaks indicating the face-centered cubic structure of silver and partial oxidation. FTIR spectra showed strong interactions between chitosan's amino and hydroxyl groups and the GO and Ag NPs. Field Emission Scanning Electron Microscopy (FESEM) revealed that pure chitosan films had a smooth, uniform surface, whereas the addition of GO introduced surface roughness due to GO sheet agglomeration. The CS-GO/Ag films displayed further roughness, with spherical and cubic Ag NPs enhancing surface texture and potentially improving mechanical and electrical properties. Mechanical testing showed that CS-GO/Ag films had superior performance, exhibiting increased Young's modulus and tensile strength, suggesting that GO and Ag NPs significantly enhanced the film’s stiffness and flexibility. Electrical conductivity measurements indicated that, while pure chitosan films were insulating, the addition of GO improved conductivity. CS-GO/Ag films demonstrated the highest electrical conductivity due to the excellent conductive properties of Ag NPs, which facilitated charge transfer. These findings suggest that CS-GO/Ag composite films hold promise for applications requiring enhanced mechanical and conductive properties.
    Keywords: Chitosan, Ag Nanoparticles, Mechanical Properties, Graphene Oxide, Composite
  • سید میثم شریف موسوی، فرشاد نظری*، رضا مسلمانی

    فرآیند نورد از رو ش های رایج و پرکاربرد در تولید و شکل دهی قطعات مختلف می باشد. فرآیند نورد خواص مکانیکی و ریزساختار مواد را تحت تاثیر قرارداده که این امر در تولید محصولات اهمیت فراوانی دارند. چاپ سه بعدی یا ساخت افزایشی از روش های جدید در تولید قطعات محسوب شده که توانایی ساخت قطعات را بطور مستقیم از روی مدل های دیجیتال داد. این فرآیند مبتنی بر ساخت قطعات بصورت لایه لایه بوده و می تواند قطعات مختلف را در زمان کوتاه و با دقت بالا تولید نماید. ویژگی های منحصر به فرد روش ساخت افزایشی مانند آزادی در طراحی، عدم نیاز به قالب و تجهیزات کمکی، تولید قطعات پیچیده و یکپارچه سازی قطعات موجب توجه بسیاری از صنایع مانند هوافضا، نفت و گاز، صنایع دریایی و خودرو به استفاده از این روش تولیدی شده است. البته مشکلاتی مانند وجود عیوب ساختاری، اعوجاج، تنش پسماند و ناهمسانگردی خواص مکانیکی مواد از چالش های موجود در تولید افزایشی یا پرینت سه بعدی قطعات محسوب می شود. استفاده از فرآیند نورد جهت اصلاح قطعات پرینت سه بعدی شده، یکی از روش های بهبود میکروساختار و خواص مکانیکی مواد می باشد. استفاده از ترکیب فرآیند نورد و ساخت افزایشی می تواند با همگن سازی و ریزدانه کردن ساختار ماده سبب افزایش سختی و استحکام شده و قابلیت افزایش طول را نیز بهبود بخشد. همچنین این فرآیند توانایی کاهش اعوجاج و تنش پسماند را در قطعات تولید شده با روش ساخت افزایشی دارد.

    کلید واژگان: نورد, پرینت سه بعدی, ساخت افزایشی, خواص مکانیکی, ریز ساختار, تنش پسماند
    Seied Meisam Sharif Mosavi, Farshad Nazari *, Reza Mosalmani

    The rolling process is one of the common and widely used methods in manufacturing and forming various parts. The rolling process has a significant effect on the mechanical properties and microstructure of materials, which making it important in the manufacturing of products. 3D printing or additive manufacturing is a of the new method in producing parts that allows for the direct creation of parts from digital models. This process is based on creation parts layer by layer and can produce various parts quickly and with high precision. The unique features of additive manufacturing, such as design freedom, no need to dies and auxiliary equipment, and the ability to produce complex and integrated parts, have caught the attention of many industries such as aerospace, oil and gas, marine and automotive industries to use this method. In the other hand, problems such as microstructure defects, distortion, residual stress and anisotropy of mechanical properties are among the challenges in additive manufactured or 3D printed parts. Using the rolling process to modify 3D printed parts is one way to improve the microstructure and mechanical properties of materials. By combining the rolling process with additive manufacturing, hardness, strength, and elongation can be increased by homogenizing and refining grains of the structure. Also, this process can reduce distortion and residual stress in the additive manufactured parts.

    Keywords: Rolling Process, 3D Printing, Additive Manufacturing, Mechanical Properties, Microstructure, Residual Stress
  • محمد علی پور*
    در این تحقیق به بررسی خواص مکانیکی (میکروسختی و سایش) نانو کامپوزیت های با زمینه Al-8Si-3Cu-2Zn به همراه درصدهای وزنی 0، 2 و5 درصد وزنی از نانوصفحات دی سولفید تنگستن پرداخته شده است. نانوکامپوزیت مورد بررسی از طریق روش آسیای مکانیکی و پرس گرم تحت دمای 510 درجه سانتی گراد تولید شده است. ریز ساختارهای پودر ها قبل و بعد از آسیای مکانیکی و نمونه های تف جوشی شده از طریق میکروسکوپ الکترونی (SEM) مورد مطالعه قرار گرفت. با بررسی سطوح ساییده شده پس از تست سایش توسط میکروسکوپ الکترونی علت کاهش وزن مورد بررسی قرار گرفت. نتایج نشان می دهند که با افزودن نانوصفحات دی سولفید تنگستن تا 5 درصد وزنی، میکروسختی نمونه ها بیش از دو برابر افزایش پیدا می کند و از 50 ویکرز برای Al-8Si-3Cu-2Zn به 101 ویکرز برای نانوکامپوزیت Al-8Si-3Cu-2Zn -5%WS2 می رسد. با توجه به نتایج تست های سایش نرخ سایش برای Al-8Si-3Cu-2Zn -5%WS2 به ترتیب به مقدار 32 درصد نسبت به زمینه آلیاژی Al-8Si-3Cu-2Zn کاهش پیدا کند. بنابراین از نانوکامپوزیت Al-8Si-3Cu-2Zn -5%WS2 می توان به عنوان یک نانوکامپوزیت خود روانکار با خواص سایشی مطلوب استفاده کرد.
    کلید واژگان: نانو کامپوزیت زمینه آلومینیومی, خواص مکانیکی, نرخ سایش, پرس گرم
    Mohammad Alipour *
    In this research, the mechanical properties (microhardness and wear) of Al-8Si-3Cu-2Zn nanocomposites with 0, 2, and 5% by weight of tungsten disulfide nanoplates have been investigated. The studied nanocomposite was produced through mechanical grinding and hot pressing at a temperature of 510 degrees Celsius. The microstructures of powders before and after mechanical grinding and sintered samples were studied through electron microscopy (SEM). By examining the worn surfaces after the wear test by electron microscope, the cause of weight loss was investigated. The results show that by adding tungsten disulfide nanoplates up to 5% by weight, the microhardness of the samples increases more than twice and from 50 Vickers for Al-8Si-3Cu-2Zn to 101 Vickers for Al-8Si.-3Cu-2Zn nanocomposite reaches -5%WS2. According to the results of the wear tests, the wear rate for Al-8Si-3Cu-2Zn-5%WS2 will decrease by 32% %, compared to the Al-8Si-3Cu-2Zn alloy background. Therefore, Al-8Si-3Cu-2Zn-5%WS2 nanocomposite can be used as a self-lubricating nanocomposite with favorable wear properties.
    Keywords: Aluminum-Based Nanocomposite, Mechanical Properties, Wear Rate, Hot Pressing
  • M. Balali, S. M. H. Seyedkashi *, A. Hasanabadi, H. Gorji, H. Baseri, M. Khosravi
    In this research, a hybrid method of a simple shear extrusion (SSE) process is proposed with simultaneous application of ultrasonic vibrations at the beginning of the deformation zone in pure copper. A cylindrical-conical-cylindrical horn was designed to amplify and transmit the ultrasonic vibrations using modal analysis in Abaqus. The resonant frequency of 20.332 kHz was used with two amplitudes of 15 and 25 micrometers. Then, the produced ultra-fine grain copper samples after the first pass with and without ultrasonic vibrations were compared. A 54% and 65% reduction in grain size were reported in ultrasonic-assisted simple shear extrusion (USSE) with two amplitudes of 15 μm and 25 μm, respectively. Also, a significant increase in microhardness values in the USSE method compared to the SSE method indicated that the hardness increases significantly by increasing the amplitudes under the influence of acoustic hardening. In addition, the required force to extrude the samples with the presence of ultrasound was reduced under the effect of acoustic softening. In addition, finite element simulation of both SSE and USSE processes was performed in Abaqus/Explicit software. Higher equivalent plastic strain and plastic deformation along the length of the sample were reported in the USSE method. Additionally, in the USSE method compared to the SSE method, the maximum plastic strain distribution was improved by applying ultrasonic vibrations.
    Keywords: Simple Shear Extrusion, Ultrasonics, Acoustic Hardening, Acoustic Softening, Mechanical Properties, Microstructural Properties
  • مهدی طاهری*، قاسم عظیمی رویین، عباس بهرامی
    این مطالعه به منظور بررسی اثر هم افزایی عنصر زیرکونیوم در لایه میانی فعال لحیم کاری، با استفاده از لایه میانی چندجزئی طراحی شد. اتصال آلومینا به مس با استفاده از لایه های میانی فعال Ag-Cu-Ti-Sn و Ag-Cu-Ti-Sn-%5.1Zr با استفاده از روش لحیم کاری سخت القایی بررسی شد. اتصالات آلومینا به مس با لایه های میانی فعال Ag-Cu-Ti-Sn و Ag-Cu-Ti-Sn-%5.1Zr به ترتیب در دماهای 840 و 880 درجه سانتی گراد به مدت 15 دقیقه و در خلا 6-10 میلی بار لحیم کاری شدند. ریزساختار اتصالات با استفاده از میکروسکوپ های نوری و الکترونی روبشی مجهز به آنالیز پراکندگی انرژی و خواص مکانیکی اتصالات با استفاده از آزمون استحکام برشی و آزمون ریزسختی ویکرز ارزیابی شدند. در اتصال آلومینا به مس با لایه میانی Ag-Cu-Ti-Sn، دو فاز TiO و Cu3Ti3O در ناحیه لایه واکنشی و ترکیبات یوتکتیک Ag-Cu پایه مس در ناحیه لحیم کاری، یافت شدند. در اتصال آلومینا به مس با لایه میانی Ag-Cu-Ti-Sn-%5.1Zr، دو فاز TiO و ZrO2 در ناحیه لایه واکنشی و دو فاز غنی از مس و نقره در ناحیه لحیم کاری مشاهده شد. استحکام برشی در اتصال لحیم کاری شده با لایه میانی Ag-Cu-Ti-Sn-%5.1Zr، 33 درصد بیشتر از اتصال لحیم کاری شده با لایه میانی Ag-Cu-Ti-Sn به دست آمد. ریزسختی در ناحیه لایه واکنشی اتصال با لایه میانی حاوی 5/1 درصد وزنی زیرکونیوم و بدون زیرکونیوم به ترتیب 248 و 146 ویکرز اندازه گیری شد.
    کلید واژگان: لایه میانی فعال, لحیم کاری سخت القایی, آلومینا, ریزساختار, خواص مکانیکی
    M. Taheri *, Gh. Azimi Roeen, A. Bahrami
    This study was intended to investigate the synergistic effect of zirconium element on the active filler metal, using a multi-component filler alloy. The bonding of alumina to copper was investigated using active filler metals, namely Ag-Cu-Ti-Sn and Ag-Cu-Ti-Sn-%5.1Zr, using the induction brazing method. Alumina/copper joining was done with active filler metals of Ag-Cu-Ti-Sn and Ag-Cu-Ti-Sn-%5.1Zr at temperatures of 840 and 880 °C, respectively, for 15 min under vacuum of 10-6 millibar. The microstructure of the joints were assessed using optical and scanning electron microscopes, equipped with energy dispersive spectroscopy and the mechanical properties of the joints were evaluated using the shear strength and the Vickers microhardness tests. Two phases of TiO and Cu3Ti3O were detected in the reaction layer area in alumina-copper joint with Ag-Cu-Ti-Sn filler metal. Ag-Cu eutectic compounds were also found in the brazing zone. In alumina-copper joint with Ag-Cu-Ti-Sn-%5.1Zr filler metal, two phases of TiO and ZrO2 were observed in the reaction layer area, and two phases rich in copper and silver were observed in the brazing zone. The shear strength, obtained in brazing joint with Ag-Cu-Ti-Sn-%5.1Zr filler, was 33% higher than that of in the brazing joint with Ag-Cu-Ti-Sn filler. The microhardness in the region of the reaction layer of the joint with filler metal containing 5.1 wt.% of zirconium and that without zirconium was measured as 248 and 146 Vickers, respectively.
    Keywords: Active Filler Metal, Induction Brazing, Alumina, Microstructure, Mechanical Properties
  • سید محمدعلی طباطبایی مجد، جواد راستی*، حمیدرضا قزوین لو

    هدف این مقاله، ساخت یک دیواره فولادی به کمک روش جوشکاری قوس و سیم مصرفی و بررسی ابعادی، خواص مکانیکی و ریزساختاری آن است. متغیرهای انتخابی در این تحقیق، زمان توقف بین پاسی، سرعت جوشکاری و سرعت تغذیه سیم جوش می باشند. طبق نتایج حاصل، ارتفاع و ضخامت میانگین دیواره با افزایش سرعت جوشکاری، به دلیل رسوب کمتر جوش در لایه، کاهش می یابند و در ادامه، یک رابطه میان ضخامت و ارتفاع دیواره بر حسب سرعت جوشکاری و نرخ تغذیه سیم جوش ارائه گردید. زمان توقف بین پاسی بالاتر منجر به افزایش ارتفاع دیواره گردید و درصد مساحت موثر نیز با افزایش سرعت جوشکاری، افزایش یافت. همچنین، استحکام کششی و درصد ازدیاد طول بر حسب وجود (یا عدم وجود) حفره و نوع ریزساختار بررسی شدند. در سرعت جوشکاری بالا و زمان توقف بین پاسی زیاد، ساختار از نوع دانه های ستونی به همراه فریت ویدمنشتاتن ریز و پرلیت بین دانه ای بود. درحالی که، در سرعت جوشکاری پایین و زمان توقف بین پاسی کم، ساختار بیشتر از فریت بلوکی و پرلیت درشت تشکیل شد که هر دو نوع ساختار، منجر به استحکام و ازدیاد طول مناسب شدند و خواص مکانیکی نمونه ها بهبود یافت. اما در شرایط دیگر، که احتمال وجود فازهای ترد در منطقه متاثر از حرارت زیادتر بود، استحکام و درصد ازدیاد طول کاهش یافتند.

    کلید واژگان: جوشکاری قوس و سیم مصرفی, ساخت افزایشی, دیواره فولادی, خصوصیات ابعادی, خواص مکانیکی, ریزساختار
    S.M.A. Tabatabaei Majd, J. Rasti *, H.R. Ghazvinloo

    The purpose of this paper is to investigate the manufacturing of a steel wall using gas metal arc welding (GMAW) process and to study its dimensional features, mechanical properties, and the microstructure. The selected parameters were the interpass dwell time, the welding speed, and the wire feeding speed. Based on the results, the average wall height and thickness decreases with increasing welding speed due to less weld deposition in the layer. A relationship between the wall thickness and height in terms of the welding speed and wire feeding speed was proposed. A longer interpass dwell time increased the wall height. The effective area percentage also increased with increasing welding speed. Tensile strength and elongation (%) were investigated based on the presence or absence of voids and microstructure. In high welding speed and long interpass dwell time, the microstructure included columnar grains with fine widmanstätten ferrite and intergranular pearlite. At low welding speed and short interpass dwell time, the microstructure consisted mostly of blocky ferrite and coarse pearlite. Both of these structures showed satisfactory strength and elongation. But in the other conditions, where the possibility of brittle phases in the heat-affected zone was higher, the strength and elongation decreased.

    Keywords: Gas Metal Arc Welding, Additive Manufacturing, Steel Wall, Dimension Features, Mechanical Properties, Microstructure
  • A. Sadrmomtazi, H. Pourahmadi Sefat Arabani *
    The effects of lightweight aggregate type, content, and maximum size, as well as the water-to-binder ratio, on the fresh and hardened characteristics of lightweight self-compacting concrete (LWSCC), were investigated. Fifteen LWSCC mixtures were prepared with varying proportions of LECA and scoria (100-0, 50-50, and 0-100%) and divided into two groups based on water-to-binder ratios and dmax values. The slump flow, T50, V-funnel flow time, and L-box were the fresh properties that were investigated, while the measurements of compressive strength, splitting tensile strength, flexural strength, modulus of elasticity, ultrasonic pulse velocity, and drying shrinkage were carried out in the hardened state. The results indicated that higher scoria content generally declined fresh state properties and improved hardened ones. An increase in dmax resulted in a reduction in the amount of superplasticizer needed to maintain the slump flow between 70 and 75 cm. The impact of the dmax on the mechanical characteristics of LWSCC was negligible. With increasing the dmax from 9.5 to 19 mm, the fc merely decreased by 7, 4, and 5% for S100-L0, S50-L50, and S0-L100 mixes, respectively. For ft, fr, and E, the decrease was between 3.2 and 0.6%. The correlation between compressive strength and splitting tensile strength was close to the CEB-FIP proposed relationship for conventional concrete, whereas the relationship between compressive strength and the modulus of elasticity was appropriately estimated using the ACI 318-19 suggested expressions. None of the proposed relations in ACI 209.2R-08 demonstrated adequate accuracy to predict the drying shrinkage of LWSCC at all ages.
    Keywords: Lightweight Self-Compacting Concrete, Scoria Aggregate, LECA Aggregate, Maximum Aggregate Size, Fresh State Properties, Mechanical Properties
  • اردلان مصدر، زهره بلک*
    هدف از انجام پژوهش حاضر بررسی تاثیر زمان آسیاکاری بر خواص سرامیک HfB2-ZrB2-TiB2 می باشد. برای این منظور پودرهای ZrB2 ،HfB2 و TiB2 با نسبت های حجمی برابر برای زمان های 15، 30 و 45 ساعت آسیاکاری شدند و با استفاده از روش جرقه پلاسما در دمای 2000 درجه سانتی گراد تفجوشی شدند. شناسایی فاز با استفاده از دستگاه تفرق اشعه ایکس انجام شد. بررسی های ریزساختاری با استفاده میکروسکوپ الکترونی روبشی انجام شد. سختی و چقرمگی شکست  نمونه ها  به ترتیب با استفاده از روش سختی سنجی ویکرز و اندازه گیری طول ترک ارزیابی شد. نتایج آنالیز تفرق اشعه ایکس پودرهای آسیا شده نشان داد که با افزایش زمان آسیاکاری از 15 تا 45 ساعت اندازه بلورک ها کاهش یافت و از 106/9 نانومتر به 59/2 نانومتر رسید. در اثر تف جوشی از تعداد و شدت پیک ها به میزان قابل توجهی کاسته شد که  نشان دهنده کاهش ناخالصی های اکسیدی و تشکیل محلول جامد است. افزایش زمان آسیاکاری سبب تشکیل بیشتر محلول جامد می شود. حداکثر مقادیر چگالی نسبی، سختی و چقرمگی شکست در نمونه آسیاکاری شده به مدت 45 ساعت به ترتیب با مقادیر 99/8 درصد، 27/3 گیگاپاسکال، MPa.m0.5 5/5 به دست آمد.
    کلید واژگان: زمان آسیاکاری, Zrb2, Tib2, Hfb2, تفجوشی به روش پلاسمای جرقه ای, ریزساختار, خواص مکانیکی
    A. Masdar, Z. Balak *
    The aim of this research was to investigate the effect of milling time on the properties of HfB2-ZrB2-TiB2 ceramic. For this purpose, HfB2, ZrB2, and TiB2 powders with equal volume ratios were ground for 15, 30, and 45 hours and sintered using spark plasma sintering method at 2000 °C. X-ray diffraction was employed for phase identification. Microstructural studies were performed using a scanning electron microscope. The hardness and fracture toughness of the samples were evaluated using the Vickers hardness test and crack length measurement, respectively. The X-ray diffraction  results of the ground powders showed that the size of the crystallites decreased from 106.9  nm to 59.2 nm with increasing the grinding time from 15 to 45 hours. As a result of sintering process, the number and intensity of the peaks decreased significantly indicating the reduction of oxide impurities and the formation of a solid solution. Increasing the milling time led to the formation of further solid solution. The maximum values ​​of relative density, hardness, and fracture toughness in the sample milled for 45 hours were obtained to be 99.8%, 27.3 GPa, and 5.5 MPa.m0.5, respectively.
    Keywords: Ball Milling Time, Zrb2, Tib2, Hfb2, Spark Plasma Sintering, Microstructure, Mechanical Properties
  • Hamed Zeidabadinejad, Mahdi Rafiei*, Iman Ebrahimzadeh, Mahdi Omidi, Farid Naeimi

    In this study, the transient liquid phase bonding of St52 plain carbon steel to WC-Co compound using BNi-2 interlayer with a thickness of 50 μm was investigated. For this purpose, samples were bonded at a temperature of 1050 °C and holding times of 1, 15, 30 and 45 min. After the joining process, the microstructure of the bonded samples was examined using a scanning electron microscope equipped with energy-dispersive X-ray spectroscopy. X-ray diffraction analysis was also used to investigate the effects of bonding parameters on the phase transformations of the bonding region. Microhardness and tensile shear tests were also conducted to study the mechanical properties of the bonded samples. Microstructural studies showed that the formation mechanism of the solidification zone in all samples was isothermal solidification mechanism. The results of the investigations showed that the only phase in the isothermal solidification zone was the nickel base solid solution. The maximum hardness in all samples belonged to WC-Co base materials due to the presence of WC particles in it. The maximum tensile-shear strength was related to the sample with bonding time of 30 min. The mode of failure in all samples was a combination of brittle and ductile fracture.

    Keywords: Transient Liquid Phase Bonding, St52 Steel, WC-Co Compound, Microstructure, Mechanical Properties
  • R. Ebrahimi

    The “Iranian Journal of Materials Forming (IJMF)” is an international open access journal in the fields of materials deformation and forming processes, which was established at Shiraz University in 2014. The journal is pleased to receive papers from scientists and engineers from academic and industrial areas related to all manufacturing processes. In addition, all deformations, including the elastic and plastic behaviors of materials and deformations due to failure, are part of this journal's field of interest. The quality and credibility of the journal have been ensured by appointing some of the most well-known professors in the world as members of its editorial board. In addition, the wide range of the selected referees in this issue is a sign of its scientific quality. It is a matter of pride that for the fourth year this journal has been successfully released quarterly and the second issue of the year was published in 2024.

    Keywords: Deformation, Plastic, Mechanical Properties
  • S.A. Zamani *, M. Bakhshi-Jooybari, H. Gorji, S.J. Hosseinipour, M. Hoseinzadeh-Amirdehi
    Investigating production techniques and enhancing the mechanical properties of fine-grained materials has been a focus of extensive research in recent years. The production of fine-grained materials free from impurities and porosity through severe plastic deformation methods has made these techniques increasingly appealing. In this research, the combined extrusion process was carried out using a die that included two twisting and ECAP channels in two modes: direct and reverse. The forming force, strain, and hardness generated in the specimen were determined using finite element analysis, 2D/3D DEFORM software, and the Vickers micro-hardness test. It was found that the maximum value of the forming force in the reverse process has increased by 30%, while the standard deviation of the strain and hardness values measured in the cross-section of the specimen decreased by 73% and 56%, respectively. This created much more uniform strains in one process passes, which is one of the main goals of the severe plastic deformation method. Evaluating the effect of design variable sizes showed that the average forming force and the maximum strain increased by 48% and 44%, respectively, as the ratio of the large diameter to the small diameter, m, of the elliptical region in the twisting channel of the die increased. Additionally, as the twist angle θ increased, these parameters rose by 35% and 63%, respectively, while an increase in the internal angle of ECAP, α, led to a 33% reduction in the average forming force and a 22% decrease in the maximum strain generated.
    Keywords: Severe Plastic Deformation, FEA, Mechanical Properties
  • امیر حضرت پور، مهدی اشرفی*

    یکی از مهمترین عوامل تاثیرگذار بر خواص پیشرانه جامد مرکب، رطوبت محیط تولید و محیط کهولت است. در این پژوهش با طراحی آزمون های لازم تاثیر رطوبت محیط تولید و محیط کهولت در سطح های مختلف بر خواص رئولوژیکی، مکانیکی، بالستیکی و کهولت پیشرانه جامد مرکب و همچنین نحوه تاثیر رطوبت بر برهمکنش های موجود در ساختار آن مورد ارزیابی قرار گرفته است. با انجام آزمون مشخص شد، تولید پیشرانه در محیط تا رطوبت 50 % تاثیر قابل توجهی بر خواص اولیه آن ندارد. اما تولید پیشرانه در معرض محیط با رطوبت (90-80) %، سبب کاهش تنش بیشینه به میزان 35 % و کرنش در تنش بیشینه به میزان 17 % نسبت به نمونه شاهد در روز چهاردهم پخت شده است. در کهولت پیشرانه در معرض محیط با رطوبت (70-50) %، در مدت 5 ماه تنش بیشینه به میزان 49 % و کرنش در تنش بیشینه به میزان 33 % کاهش یافته است. همچنین با توجه به نتایج به دست آمده از آزمون تعیین نرخ سوزش، کهولت پیشرانه در معرض محیط با رطوبت اشباع به مدت طولانی سبب کاهش نرخ سوزش آن در فشارهای مشابه می شود. تصاویر میکروسکوپی الکترونی روبشی (SEM) نمونه کهولت یافته در معرض رطوبت اشباع و نتایج حاصل از آن نشان می دهد، عامل اصلی کاهش خواص مکانیکی، گسستن پیوند آمونیوم پرکلرات (AP) با ماتریس بایندر و AP ریزی شدید نمونه است.

    کلید واژگان: پیشرانه جامد مرکب, رطوبت, محیط تولید, محیط کهولت, خواص مکانیکی, نرخ سوزش, برهمکنش ها
    A. Hazratpour, M. Ashrafi*

    Production and aging environment moisture is one of the most important factors affecting solid composite propellant properties. In this research by designing necessary experiments, effect of production and aging environment moisture on the rheological, mechanical, ballistic and aging properties of solid composite propellant and also mechanism of moisture effects on the existent interactions in its structure were assessed. Experimental results showed that, producing propellant in the environment with up to 50 % humidity doesn’t have noticeable effect on its primary properties. But producing propellant in environment with 80-9o % humidity, decreased ultra tensile strength of 35 % and strain at ultra tensile strength of 17 % comparing the the base sample after fourteenth day of curing process. Aging of propellant in the environment with (50-70) % humidity during 5 months decreased ultra tensile strength of 49 % and strain at ultra tensile strength of 33 %. Burning rate determining experiment showed that aging of propellant in environment with saturated moisture for long time reduced the burning rate in the same pressures. Scanning electron microscopy (SEM) of the aged sample in environment with saturated moisture shows that the main reason of reducing mechanical properties are debonding of interaction between AP with binder matrix and intense abscission of AP from the sample

    Keywords: Composite Solid Propellant, Moisture, Production Environment, Aging Environment, Mechanical Properties, Burning Rate, Interactions
  • مجید رحیمی، مهدی امیدی، سعید جبارزارع، حمیدرضا بخششی راد، مسعود کثیری عسگرانی*، حمید غیور

    در این پژوهش، کامپوزیت مس-نقره-کاربید سیلیسیم با استفاده از فرایند اصطکاکی هم زدنی ساخته شد. ذرات تقویت کننده SiC در ابعاد نانو و میکرو استفاده شدند. به منظور ارزیابی خواص ریزساختاری از آنالیز پراش پرتو ایکس، میکروسکوپ الکترونی روبشی و میکروسکوپ نوری استفاده شد. ارزیابی خواص مکانیکی از طریق میکروسختی سنجی، آزمایش کشش و از آزمایش پین بر روی دیسک برای ارزیابی رفتار سایشی کامپوزیت استفاده شد. نتایج آنالیز اشعه ایکس حضور دو فاز زمینه محلول جامد CuAg به همراه ذرات SiC را آشکار کرد که نشان دهنده تشکیل کامپوزیت Cu-Ag-SiC بود. این موضوع حاکی از کاهش اندازه دانه زمینه CuAg بود. استفاده از فرایند اصطکاکی هم زدنی FSP در حضور ذرات تقویت کننده و بدون آن منجر به کاهش اندازه بلورک و میانگین اندازه دانه نسبت به نمونه بدون FSP شد. به طوری که اندازه دانه نمونه بدون FSP و نمونه FSP شده بدون ذرات تقویت کننده و با ذرات تقویت کننده نانو به ترتیب در حدود3/46، 2/19 و 6/3 میکرومتر بدست آمد. کاهش اندازه دانه، ریزتر شدن ذرات تقویت کننده کاربید سیلیسیم از میکرو به نانو و افزایش کسرحجمی ذرات تقویت کننده بیشترین تاثیرات را بر میزان سختی گذاشتند به نحوی که استفاده از ذرات میکرو در کسر حجمی بیشتر، سختی به بالاترین مقدار خود یعنی 123 ویکرز رسید. سایش در نمونه قبل از FSP به علت ماهیت نرم بودن آن از نوع سایش چسبان و بعد از FSP در نمونه بدون ذرات تقویت کننده سایش چسبان کاهش پیدا کرد و در اثر افزودن ذرات تقویت کننده میکرو و نانومتری کاربید سیلیسیم به طور کلی مکانیزم سایش به خراشان تغییر پیدا کرد. به عنوان یک نتیجه کلی می توان بیان نمود که استفاده از ذرات تقویت کننده نانومتری کاربید سیلیسیم بوسیله فرایند اصطکاکی هم زدنی منجر به تولید کامپوزیت  Cu-Ag-SiC با خواص مکانیکی بالا می شود.

    کلید واژگان: ساخت افزودنی, اتصال فاز مایع گذرا, آلیاژ تیتانیوم 6242, فولاد زنگ نزن 316, زمان اتصال, زبری سطح
    M. Rahimi, M. Omidi, S. Jabbarzare, H. R. Bakhsheshi-Rad, M. Kasiri-Asgarani*, H. Ghayour

    In this research, copper/silver-silicon carbide Cu-Ag-SiC composite was prepared by the friction stir processing (FSP). For this purpose, nanometer and micrometer SiC particles were used as reinforcing particles. In order to evaluate the microstructural properties, X-ray diffraction (XRD) analysis, scanning electron microscope and optical microscope were employed. Evaluation of mechanical properties through microhardness measurement, tensile test and pin on disc test were utilized to evaluate the wear behavior of the composite. The results of X-ray analysis revealed the presence of two phases of CuAg solid solution along with SiC particles, which indicated the formation of Cu-Ag-SiC composite. The addition of nano-particles led to a significant decrease in the intensity of peaks compared to micro-particles. This indicated a decrease in the grain size of the CuAg matrix. Using the FSP in the presence of reinforcing particles and without it led to a decrease in the crystal size and average grain size compared to the sample without FSP. So that the grain size of the sample without FSP and the FSPed sample without reinforcing particles and with nano-reinforcing particles were found to be about 46.3, 19.2 and 3.6 µm, respectively. The wear mechanism in the sample before FSP was adhesive wear due to its soft nature of the matrix, and after FSP in the sample without reinforcing particles, the adhesive wear decreased and due to the addition of silicon carbide micro and nano- particles reinforcement, the wear mechanism in entirely altered to abrasive wear. Overall, it can be stated that the addition of silicon carbide nanoparticles by FSP leads to the fabrication of  Cu-Ag-SiC composite with high mechanical properties.

    Keywords: Friction Stir Processing, Nanocomposite, Copper-Silver, Silicon Carbide, Microstructure, Mechanical Properties, Wear Properties
  • مجتبی موحدی*، حسینعلی شیروی خوزانی، اشکان عزلتی

    در این پژوهش، اثر متغیرهای فرایند جوشکاری اصطکاکی تلاطمی (سرعت انتقالی ابزار در بازه 50 تا 150 میلی متر بر دقیقه و سرعت چرخشی ابزار در بازه 300 تا 1100 دور بر دقیقه) بر ریزساختار و خواص مکانیکی اتصال آلومینیوم AA5052 به پلی پروپیلن PP-Z30S مورد مطالعه قرار گرفت. بررسی های ریزساختاری با میکروسکوپ های نوری و الکترونی روبشی نشان داد ایجاد اتصال با تشکیل قفل های مکانیکی به شکل قطعات لنگر مانندی از جنس آلومینیوم همراه است. به علاوه مشاهده شد که کاهش حرارت ورودی (با افزایش سرعت خطی و یا کاهش سرعت چرخشی ابزار) موجب افزایش اندازه این لنگرها می شود. نتایج آزمون کشش-برش نشان داد که افزایش سرعت انتقالی ابزار از 50 به 100 میلی متر بر دقیقه با افزایش اندازه لنگرها موجب افزایش نیروی شکست (حدود %10) می شود. اگرچه، افزایش بیشتر سرعت چرخشی، بدلیل ایجاد عیوب و حفرات در فصل مشترک اتصال، نیروی شکست را کاهش داد (از 235 به 181 نیوتن). افزایش سرعت چرخشی از 300 تا 900 دور بر دقیقه نیز با ایجاد لنگرهای عمود بر سطح پلیمر و با عمق نفوذ بیشتر، موجب افزایش استحکام اتصال (تا حدود %70) شد.

    کلید واژگان: جوشکاری اصطکاکی تلاطمی, آلومینیوم AA5052, پلی پروپیلن PP-Z30S, قفل مکانیکی, ریزساختار, خواص مکانیکی
    M. Movahedi*, H. Shirovi Khoozani, A. Ozlati

    In this research, the influence of friction stir welding parameters (tool traverse speed ranging from 50 to 150 mm/min, and tool rotational speed ranging from 300 to 1100 rpm) was investigated on the microstructure and mechanical properties of AA5052 aluminum/PP-Z30S polypropylene joint. Results showed that joint formation was accompanied by the formation of mechanical locks in the shape of anchor-like aluminum pieces. Decreasing the heat input (either by increasing the tool traverse speed or decreasing the tool rotational speed) resulted in the formation of larger anchors. The results of tensile-shear test showed that increasing the tool traverse speed from 50 to 100 mm/min led to an enhancement in the fracture load (by ~10%), while at higher traverse speeds, the fracture load decreased (from 235 to 181 N) due to the formation of defects and voids at the joint interface. An increase in the tool rotational speed from 300 to 900 rpm resulted in a superior fracture load (by 70%) due to the formation of anchors perpendicular to the polymer surface with greater penetration depth.

    Keywords: Friction Stir Welding, AA5052 Aluminum, PP-Z30S Polypropylene, Mechanical Locks, Microstructure, Mechanical Properties
  • Syyed Mohammadreza Sedehi, Mohammadreza Maraki *, Seyed Davoud Houshyar Eftekhari, Mohammadreza Fazeli, Zahra Maleki, Fatemeh Norouzi Palangani

    Given the strategic importance of pure titanium in sensitive industries, such as healthcare, and the existing weaknesses in the mechanical and physical properties of this metal, the present study aims to investigate the enhancement of its mechanical properties through the composite fabrication of pure titanium with Reduced Graphene Oxide (RGO) nanoparticles based on Spark Plasma Sintering (SPS) method. During the fabrication process, the mechanical properties of the samples were evaluated and compared using specialized tests. Composite fabrication is one of the effective and common methods for improving the material properties. As demonstrated in the results obtained in this study, the SPS method can be proposed as a reliable method for producing high-quality composites. Further evaluation of the mechanical properties of the samples reinforced with RGO indicates that the optimal presence of this reinforcement significantly enhances the mechanical properties compared to those of the pure samples. Moreover, the analysis of the behavior of the produced samples during the sintering process indicates a significant increase in the force and pressure in samples containing reduced graphene oxide, with no observed significant changes in displacement and temperature.

    Keywords: Reduced Graphene Oxide, Spark Plasma Sintering, Mechanical Properties, Medical Implants
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال