multi-layer perceptron
در نشریات گروه مهندسی شیمی، نفت و پلیمر-
مجله فرآیند نو، پیاپی 88 (زمستان 1403)، صص 75 -88در این تحقیق با تهیه آمیزه های پلیمری ABS و آنتی اکسیدان Irganox1076، مقاومت در برابر ضربه ABS بهبود یافته است. برای تهیه این آمیزه های پلیمری، آکریلونیتریل-بوتادین-استایرن گرید SD-0150تولیدی پتروشیمی تبریز به عنوان ماتریس انتخاب گردید و روش کار بر مبنای استفاده از آنتی اکسیدان Irganox1076 به منظور اصلاح کننده ضربه و مقاوم در برابر حرارت مورد استفاده قرار گرفت. تمام نتایج با همدیگر و با خواص آکریلونیتریل-بوتادین-استایرن گرید SD-0150 (نمونه مرجع) مقایسه گردید. از شبکه های عصبی مصنوعی روشMLP برای پیش بینی داده ها استفاده شده است. نتایج نشان دهنده آن است که حضور آنتی اکسیدان Irganox1076 در آمیزه های پلیمری سبب بهبود خواص فیزیکی ABS شده است. بررسی خواص MFR ، VICAT، IZOD و Tensile پلیمر با نام تجاری ABS-SD0150 با تهیه آمیزه ABS / Irganox1076 با ترکیب درصد 98 درصد ABS و 2 درصد آنتی اکسیدان نشان دهنده بهبود خواص آن در برابر حرارت، ری اکسترود چند باره، تنش های محیطی و خواص مکانیکی آن شده است.کلید واژگان: مقاومت در برابر ضربه، آکریلونیتریل-بوتادین-استایرن، آنتی اکسیدان Irganox 1076، شبکه های عصبی مصنوعی، Multi-Layer PerceptronThis research was undertaken to investigate the efficacy of Irganox 1076 antioxidant in enhancing the impact strength of acrylonitrile butadiene styrene (ABS) polymer. Specifically, the study focused on ABS grade SD-0150, a product of Tabriz Petrochemical Company, which served as the base polymer. Irganox 1076 was strategically incorporated into the polymer matrix, functioning as both an impact modifier and a heat stabilizer, with the aim of improving the material's overall performance. To comprehensively evaluate the antioxidant's influence on the polymer's properties, a series of ABS/Irganox 1076 blends were meticulously prepared. These blends were then subjected to a battery of characterization tests, including the determination of melt flow index (MFI), Vicat softening temperature, and Izod impact strength. All experimental results were rigorously compared against the properties of the pristine ABS-SD0150, establishing a baseline for analysis. Furthermore, a multilayer perceptron (MLP) neural network, a sophisticated machine learning tool, was employed to model the collected experimental data. This computational approach facilitated the prediction of blend properties, offering insights beyond direct experimental measurements. The results of this study conclusively demonstrated that the incorporation of Irganox 1076 led to a significant improvement in the physical properties of ABS. Notably, the blend containing 2% by weight of Irganox 1076 exhibited markedly enhanced thermal stability, a critical factor for many applications. Additionally, the polymer's inherent resistance to environmental stress, was also substantially improved. These findings underscore the potential of Irganox 1076 as an effective additive for enhancing the performance characteristics of ABS polymers.Keywords: Imapct Resistant, Acrilonitrhil Butadiene Styrene, Irganox 1076 Anti Oxidant, Artificial Neural Networks, Multi Layer Perceptron
-
Full identification and understanding of hydrocarbon reservoirs depends on knowing the mechanical properties. One of the main parameters that indicates mechanical properties is shear wave velocity. Bipolar sound recorder is among thee best tools for measuring shear wave velocity. This tool is not very popular due to the high costs of driving in the well despite the high accuracy. Shear wave velocity estimation methods include three main branches of experimental methods, regression and the use of machine learning algorithms or in other words artificial neural networks. The studied formation in this research is Sarvak in one of the oil fields in the south of Iran. The input data of the estimator model is the usual petrophysical logs that are driven and measured in many wells, and the output data is obtained from the DSI tool. In this research, data are pre-processed by removing noise effects. Then, to improve the estimation effectiveness, data with a high correlation coefficient are selected as input data. After that, shear wave velocity is estimated from petrophysical data with three types of multi-layer perceptron (MLP), multi-layer perceptron optimized by particle swarm optimization (MLP-PSO), and the introduction of a relatively new method of multi-layer perceptron-social ski drive (MLP-SSD). To compare the efficiency of the neural network method, two traditional experimental and regression methods used. The validation results show the better performance of the MLP-SSD method.
Keywords: Shear Wave Velocity, Petrophysical Logs, Deep Learning, Multi-Layer Perceptron, Particle Swarm Optimization, Social Ski Drive, Sarvak Formation -
The purpose of this study is to calculate Total Organic Carbon (TOC) values of the Iranian field using a combination of sonic and resistivity logs (Passay method) and neural networks method in the conditions, where the core analysis or well-log measurement does not exist. We compared the resultant TOC with the ones obtained from the geochemical analysis. To correlate between the total organic carbon data and petrophysical log, which are available after logging, Multilayer Perceptron Artificial Neural Network is used. After analyzing 100 cutting samples by using rock -Eval pyrolysis, geochemical parameters have achieved.By using the multi-layer perceptron with Levenberg–Marquardt training algorithm, the TOC with correlation coefficient 0.88 and MSE 1.443 have been provided in the intervals without analyzed samples. Finally, the TOC was estimated by using separation of resistivity and the sonic log, although, with the favorable results in some other fields, the estimation had a correlation coefficient of 51% in this field. Comparing the performance of the multi-layer perceptron with Levenberg–Marquardt training algorithm (with an accuracy of 88%) and results of the Passay method (with an accuracy of 51%) indicated that the neural network is more accurate and has better consistency compared with the empirical formula.
Keywords: Multi-Layer Perceptron, Petrophysical logs, Total Organic Carbon (TOC), Passay Method, Levenberg–Marquardt Training Algorithm -
A key variable for determining carbon dioxide (CO2) storage capacity in sub-surface reservoirs is the interfacial tension (IFT) between formation water (brine) and injected gas. Establishing efficient and precise models for estimating CO2 – brine IFT from measurements of independent variables is essential. This is the case, because laboratory techniques for determining IFT are time-consuming, costly and require complex interpretation methods. For the datasets used in the current study, correlation coefficients between the input variables and measured IFT suggests that CO2 density and pressure are the most influential variables, whereas brine density is the least influential. Six artificial neural network configurations are developed and evaluated to determine their relative accuracy in predicting CO2 – brine IFT. Three models involve multilayer perceptron (MLP) tuned with Levenberg-Marquardt, Bayesian regularization and scaled conjugate gradient back-propagation algorithms, respectively. Three models involve the radial basis function (RBF) trained with particle swarm optimization, differential evolution and farmland fertility optimization algorithms, respectively. The six models all generate CO2 – brine IFT predictions with high accuracy (RMSEKeywords: Interfacial Tension (IFT), CO2 Storage, Multi-layer perceptron, Radial basis function, Neural Network Prediction, IFT Influencing Variables
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.