compositional data
در نشریات گروه مهندسی معدن-
International Journal of Mining & Geo-Engineering, Volume:54 Issue: 1, Winter-Spring 2020, PP 33 -38
Identification of geochemical anomalies is a significant step during regional geochemical exploration. In this matter, new techniques have been developed based on deep learning networks. These simple-structure-networks act like our brains on processing the data by simulating deep layers of thinking. In this paper, a hybrid compositional-deep learning technique was applied to identify the anomalous zones in Dehsalm area which is located in 90 km of SW-Nehbandan, a town in South Khorasan province, Iran. The compositional robust factor analysis (CRFA) was applied as a tool to help select a meaningful subset as an input to Continuous Restricted Boltzmann Machine (CRBM). The dataset consists of 635 stream sediment geochemical samples analyzed for 21 elements. Using CRFA, the 3rd factor (i.e. Pb, Zn, Cu, Ag, Sb, Sr, Ba, Hg and W), indicating epithermal mineralization in the area, was considered as an input set to CRBM. The best-performed CRBM with 80 hidden units and stabilized parameters at 150 iterations was finalized and trained on all the geochemical samples of the study area. Average square contribution (ASC) and average square error (ASE) were determined as anomaly identifiers on the reconstructed error of the trained CRBM. A statistical threshold was applied on the values of the criteria (ASC & ASE) and the resulting outputs were mapped to delineate the anomalous samples. The maps indicated that ASC and ASE have the same performance in the multivariate geochemical anomaly recognition. The anomalies were spatially confirmed with the mineral indexes of Pb, Zn, Cu and Sb, as well as several active mines of Pb and Cu in the study area.
Keywords: Geochemical exploration, compositional data, Robust factor analysis, CRBM, Dehsalm -
Due to the existence of a constant sum of constraints, the geochemical data is presented as the compositional data that has a closed number system. A closed number system is a dataset that includes several variables. The summation value of variables is constant, being equal to one. By calculating the correlation coefficient of a closed number system and comparing it with an open number system, one can see an increase in the values of the closed number system, which is false. Such features of this data prevent the application of standard statistical techniques to process the data. Therefore, several methods have been proposed for transforming the data from closed to open number systems. There are various geostatistical methods consisting of estimation and simulation methods in order to model a deposit. Geostatistical simulations can produce various models for a deposit with different probability percentages. The most applicable geostatistical simulation method is the sequential Gaussian simulation technique, which is highly flexible. In this work, 392 Litho-geochemical data of the Baghqloom region of Kerman in Iran consisting of 20 elements were at first converted using an open number system. Afterwards, the elements that were helpful for exploring the area and were normally standard were simulated for 100 times. After the simulations, the valid output was chosen using geostatistical validation. The maps derived from the simulations revealed the enriched concentrations of mineralization elements in the central regions.Keywords: Compositional Data, Closed, Open Number System, Geostatistical simulation, Sequential Gaussian Simulation, Baghqloom, Kerman
-
روش نگاشت خودسازمانده (SOM)یکی از روش های خوشه بندی است که می تواند بدون نظارت و با کمک شبکه عصبی، فضاهای چندبعدی و پیچیده داده ها را به یک فضای دوبعدی تبدیل کند. به دلیل بسته بودن و خاصیت ترکیبی ذاتی داده های ژئوشیمیایی،قبل از هر تحلیلی بایستی با تبدیل های خاصی باز شوند. یکی از مهم ترین تبدیل هایی که امروزه روی این نوع داده ها برای بازکردن آن ها انجام می شود، خانواده تبدیل های نسبت لگاریتمی است که در دو دهه اخیر توسط دانشمندان علوم آمار ارائه شده است. در حال حاضر روش های تحلیل آماری و داده کاوی خاص این نوع داده ها مثل استاندارد سازی، آمار توصیفی، کاهش بعد، خوشه بندی، رگرسیون، زمین آمار و غیره از جنبه های مختلف در دنیا در حال بررسی است. در این پژوهش ضمن معرفی روش SOM به عنوان یکی از مهم ترین روش های خوشه بندی مبتنی بر هوش مصنوعی، کاربرد آن در تحلیل داده های ژئوشیمیایی بررسی شده است. به عنوان مطالعه موردی، داده های ژئوشیمیایی رسوبات آبراهه ای برگه 1:100،000 خوسفکه خاصیت بسته یا ترکیبی دارند، نخست با کمک تبدیل نسبت لگاریتمی مرکزی یا clr، باز شده و دندروگرام خوشه بندی مربوطه ترسیم شد. در مرحله بعد داده ها یکبار به صورت بازشده و بار دیگر به صورت خام ولی استاندارد شده با روش های ترکیبی به شبکه SOM وارد شده و خروجی آن هربار به صورت نگاشتهای صفحات وزنی نورونها برای هر متغیر ترسیم شد. الگوی توزیع وزنی در نگاشت های بیان شده برای متغیرهایی که در یک خوشه قرار می گیرند، بسیار به هم شبیه است. مقایسه نتایج به کارگیری این روش با نتایج دندروگرام به دست آمده، نشان دهنده انطباق قابل قبول این دو روش درصورت استفاده از داده های خام استاندارد شده دارد. نقطه ضعف این روش این است که تشخیص الگوهای مشابه در خروجی به عهده ناظر است و اگر تعداد متغیرها زیاد باشد نمی توان تمام الگوهای مشابه را به راحتی تشخیص داد.
کلید واژگان: شبکه عصبی، نگاشت خودسازمانده، ژئوشیمی، داده های ترکیبی، دندروگرام، خوسفExtensive development of the data mining methods via the artificial intelligence implementation and machine learning algorithms that the nature has inspired، have become an important challenge to the classical statistical analysis. Some constraints in the statistical assumptions are not made in these methods and just by defining the initial conditions and proper training، acceptable results can be achieved. Self organizing map (SOM) is a way that can unsupervisedly reduce the high dimensional complicated spaces to a 2 or 3D space and recognize the principal components without any difficult and almost impossible assumptions. Despite all the transformations applied to geochemical data، they intrinsically do not suit any statistical analysis and this is a serious factor for so many ifs and buts before analyzing the data. In this study، while introducing SOM as one of the most important approaches based on artificial intelligence، its usage in geochemistry has been demonstrated in a case study of stream sediment sampling carried out in Khusf geological 1:100000 sheet. Comparing the results of applying SOM on the compositionally scaled data and compositional univariate transformed data with exploratory compositional dendrogram of the data showed a favorable conformity of the dendrogram to the SOM clustering on the compositionally scaled data.
Keywords: network, Self Organizing Map, geochemistry, compositional data, Khusf -
International Journal of Mining & Geo-Engineering, Volume:48 Issue: 2, Summer and Autumn 2014,, PP 191 -199The closed nature of geochemical data has been proven in many studies. Compositional data have special properties that mean that standard statistical methods cannot be used to analyse them. These data imply a particular geometry called Aitchison geometry in the simplex space. For analysis, the dataset must first be opened by the various transformations provided. One of the most popular of the applied transformations is the log-ratio transform. The main purpose of this research is to identify the anomalous area in the Khusf 1:100000 sheet which is located in the western part of Birjand, South Khorasan province. To achieve the goal, a dataset of 652 stream sediments geochemically analysed for 20 elements was collected. In practice, the geochemical data were first opened by CLR transformation and then the range correlation coefficient (RCC) ratio was calculated and mapped. In consequence, the robust factor analysis for compositional data was used to separate the elements, mostly in the high-value regions obtained by the method of RCC. Finally, the priority of anomalies was specified using weighted catchment analysis. The above procedures led to the recognition of some anomaly zones for elements of Cu, Bi, Sb, Ni and Cr in the study area. Such results can be useful for designing an appropriate exploratory plan for semi-detailed and detailed exploration steps.Keywords: compositional data, Iran, log, ratio transform, RCC, stream sediment
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.