به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

stacked autoencoder

در نشریات گروه مهندسی معدن
تکرار جستجوی کلیدواژه stacked autoencoder در نشریات گروه فنی و مهندسی
تکرار جستجوی کلیدواژه stacked autoencoder در مقالات مجلات علمی
  • M. Abedini *, M. Ziaii, Y. Negahdarzadeh, J. Ghiasi-Freez
    The porosity within a reservoir rock is a basic parameter for the reservoir characterization. The present paper introduces two intelligent models for identification of the porosity types using image analysis. For this aim, firstly, thirteen geometrical parameters of pores of each image were extracted using the image analysis techniques. The extracted features and their corresponding pore types of 682 pores were used for training two intelligent models, BPN (back-propagation network) and SAE (stacked autoencoder). The trained models take the geometrical properties of pores to classify the type of six porosity types including
    intra-particle, inter-particle, vuggy, moldic, biomoldic, and fracture. The MSE values for the BPN and SAE models were found to be 0.0042 and 0.0038, respectively. The precision, recall, and accuracy of the intelligent models for classifying the types of pores were calculated. The BPN model was able to correctly recognize 193 intra-particle pores out of 197 ones, 45 inter-particle pores out of 50 ones, 7 vuggy pores out of 9 ones, 10 moldic pores out of 12 ones, 2 biomoldic pores out of 3 ones, and 6 fractures out of 7 ones. Also the SAE model was able to correctly classify 193 intra-particle pores out of 197 ones, 46 inter-particle pores out of 50 ones, 8 vuggy pores out of 9 ones, 10 moldic pores out of 12 ones, 3 biomoldic pores out of 3 ones, and 7 fractures out of 7 ones. The results obtained showed that the SAE model carried out a bit more accuracy for classification of the inter-particle, vuggy, biomoldic, and fracture pores.
    Keywords: porosity classification, image analysis, neural network, deep learning, stacked autoencoder
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال