جستجوی مقالات مرتبط با کلیدواژه
تکرار جستجوی کلیدواژه structure interaction در نشریات گروه فنی و مهندسی
structure interaction
در نشریات گروه مهندسی زلزله
تکرار جستجوی کلیدواژه structure interaction در مقالات مجلات علمی
-
با توجه به اینکه فضای شهری دارای ساختمان هایی با ارتفاع های متفاوت و چیدمان بسیار نزدیک به یکدیگر است، اثرات اندرکنشی محیط مجاور بر پاسخ سازه ها تاثیرگذار خواهد بود. در این مقاله به بررسی اثرات اندرکنشی سازه های مجاور1 بر پاسخ لرزه ای یکدیگر پرداخته شده است. بدین منظور روسازه2 از نوع قاب خمشی بتنی با سه تیپ 5، 10 و 15 طبقه واقع بر فونداسیون سطحی گسترده و ساختگاه متشکل از خاک نوع III بر اساس روش مستقیم3 و با محیط مرزی مناسب به صورت سه بعدی مدل شده اند. اعضای فصل مشترک جهت شبیه سازی تماس اصطکاکی و لغزش احتمالی در اثر تحریک لرزه ای با استفاده از نرم افزار OpenSees به کار برده شده است. بررسی پاسخ های شتاب، جابه جایی نسبی و نیروی برشی طبقات نشان داد که اثرات اندرکنش و مجاورت بر پاسخ دینامیکی سازه ها به خصوصیات دینامیکی سازه، نوع و محتوای فرکانسی زمین لرزه و نحوه مجاورت سازه ها از نظر ارتفاعی وابسته است. نتایج نشان داد، شتاب، جابه جایی نسبی و نیروی برشی سازه های کوتاه (5 طبقه) در حالت مجاورت با سازه های بلندتر (15 طبقه) در مقایسه با حالت سازه منفرد، به ترتیب افزایش 10، 20 و 40 درصدی را تجربه می کند. برای سازه های متوسط (10 طبقه) مجاورت با سازه های کوتاه (5 طبقه) موجب کاهش پاسخ شتاب تا 24 درصد و در مجاورت با سازه های بلندتر (15 طبقه) جابه جایی نسبی و برش به ترتیب 20 و 16 درصد افزایش را نشان می دهد.
همچنین پاسخ شتاب سازه های نسبتا بلند (15 طبقه) در مجاورت با سازه های هم ارتفاع به میزان 15 درصد کاهش و جابه جایی نسبی در مجاورت با سازه با ارتفاع متوسط (10 طبقه) 23 درصد کاهش را نشان می دهد. این در حالی است که این سازه در مجاورت با سازه های کوتاه مرتبه (5 طبقه) افزایش 35 درصدی در برش پایه را تجربه می کند. با توجه به نتایج حاصل می توان گفت در نظرگیری اثر سازه- خاک- سازه می تواند موجب تغییر قابل توجه در پاسخ های مختلف سازه ای بشود و لازم است در طراحی سازه ها این مسئله لحاظ گردد.کلید واژگان: اندرکنش سازه، خاک، سازه، سازه های مجاور، تحلیل های دینامیکی، OpenSeesOn the other side, with urbanization, city blocks contain clusters of closely spaced buildings. Under such circumstances, the dynamic interaction of adjacent structures should not be ignored. However, available evidences show that in the field of soil-structure interaction, little attention has been payed to adjacent structures. In addition, the vast majority of studies are subjected to consider two-dimensional models with plain strain behavior assumptions. Such simplifying assumptions lead to obtain not so accurate and reliable achievements.
In this paper, the effects of soil structure interaction and adjacent structures interaction on the seismic response of structures through considering three-dimensional models by using OpenSees software were studied. In this regard, structures are divided in to two major groups, fixed base structures (structures resting on the rigid base) and flexible base structures (superstructures resting on the flexible base), whereas flexible base structures contains Soil-Structures and Structure-Soil-Structure systems. As respects, the common dynamic analysis focus on the fixed base assumptions; therefore, in this study, the evaluations and comparisons between results of flexible base structures and fixed base structures analysis have been paid attention to. Due to the modeling of superstructures for analysis and design processes, three reinforced concrete moment resisting frame, 5, 10 and 15 stories, two spans, resting on shallow foundations with different structural neighborhoods are selected in conjunction with a soil type III (according to ground type classification of Iranian building code), based on the direct method, considering of appropriate lateral boundaries and interface elements to simulate frictional contact and probable slip due to seismic excitation. Besides, for the design and analysis of superstructures according to the Iranian concrete code, gravity and lateral loads with considering Iranian national building code part 6 and Iranian seismic code 2800, respectively, is conducted by using ETABS software, then structural sections are designed according to Iranian national building code part 9.
Nonlinear dynamic analysis using OpenSees software under influence of three different earthquake records is conducted. The study of the response of acceleration, drift and shear force in the stories indicates that effects of soil-structure and structure-soil-structure interaction depend on dynamic characteristics of buildings, frequency content of seismic data and the height of adjacent structures. The results show that considering adjacent structures with common distance lead to increase or decrease about tens of percent of dynamic responses.
The results indicate that when a short building (5-story) has two adjacent close tall buildings (15-story), maximum responses of acceleration, drift and shear force increase up to 10, 20 and 40 percent, respectively. Results show that a 10-story building with two adjacent 5-story buildings, up to 24% decreases in acceleration response; while with two adjacent 15-story buildings increase in responses of drift and shear force, 20 and 16 percent, respectively. In tall buildings (15-story in this study) with the same height adjacent structures, the acceleration up to 15% and drift up to 23% decrease with two 10-story adjacent structures and shear force increases up to 35% with two 5-story adjacent structures. On the other hand accepting the results of common structural dynamic analysis lead to unsafely design for tall buildings, and for short structures are not affordable.Keywords: Structure, Soil, Structure interaction, Adjacent Structures, Dynamic Analysis, OpenSees -
تجربیات حاصل از زلزله های گذشته، حاکی از تاثیر قابل ملاحظه ی پدیده ی اندرکنش خاک و سازهبر پاسخ های دینامیکی سازه های مرتفع، حجیم، وزین و سخت مستقر روی خاک های نسبتا نرم است. کنترل تاثیر پدیده ی مذکور بر قابلیت اعتماد لرزه ایساختمان ها با سیستم نوین قالب تونلی، نظر به وزن زیاد و سختی قابل توجه سیستم، ضروری به نظر می رسد. در این مطالعه، خاک زیر ساختمان های قالب تونلی 5 و 10 طبقه به کمک فنرهایی به صورت خطی مدل شده و پس از تحلیل، ضمن کنترل پاسخ ها، با رویکردی احتمالاتی، سطح عملکرد ساختمان ها و ضرایب اطمینان در برابر لغزش و واژگونی حین زلزله در دو حالت بستر صلب و انعطاف پذیرمورد ارزیابی و مقایسه قرار گرفته است. نتایج نشان می دهد، با افزایش ارتفاع ساختمان و شدت زلزله، پدیده ی اندرکنش خاک و سازه بر پاسخ های سازه شامل برش و جابه جایی طبقات و نیز موقعیت شروع خرابی ها موثر بوده و نسبت به بستر صلب، می تواند احتمال رسیدن المان ها به اولین سطوح خرابی را تا 30 درصد و احتمال لغزش و واژگونی کلی ساختمان را حداقل 10 درصد افزایش دهد. به نظر می رسد که به خصوص در مناطق با لرزه خیزی بالا و خاک های نرم، پدیده ی نامبرده می تواند سبب کاهش بازه ی قابلیت اعتماد سازه های بلند در حصول به عملکردهای از پیش تعیین شده گردد.کلید واژگان: سیستم قالب تونلی، دیوار برشی، اندرکنش خاک و سازه، قابلیت اعتماد سازه ای، تحلیل شکنندگی لرزه ایThere are proven reasons indicating that during seismic excitation, considering substrate flexibility, i.e. Soil-Structure Interaction (SSI) may intensify displacement, change in internal members forces and damage and even lead to the collapse of the construction. Conventional structural design methods neglect the SSI effects. The lesson learnt from past earthquakes revealed a significant effect of SSI phenomena on the dynamic response of tall, bulky and heavy structures resting on relatively soft soils, for example, nuclear power plants, high-rise buildings, and elevated RC water tanks on soft soil. Neglecting SSI is reasonable for light weight structures in relatively stiff soil such as low-rise buildings.
The tunnel form buildings are one of these heavy and stiff systems that considering SSI may be important in modeling for seismic loading. To introduce, this system is a modern constructing technique that is recently used in mass construction projects This system lacks structural beams and columns in which only the elements of slab and wall as vertical and lateral load-bearing elements are used. The wall and upper slab are concreted at the same time. It seems that considering SSI phenomenon for such buildings concerning high lateral stiffness and weight, especially under strong earthquake or soft soil ground is of great importance. Despite widespread usage, unfortunately in the current design codes, the system is not considered as an independent structural system. Although there are valuable researches carried out on tunnel form buildings, they are still limited in a literature survey.
A literature survey shows that the experimental and numerical study to evaluate the seismic behavior of tunnel form buildings considering SSI effect is very limited. Now, in many densely populated cities with a relatively high risk of occurring earthquakes, this system is used as mass housing projects. Since the rigidity of soil bed below the foundation in analysis and design of these structures is a common assumption among designers, this study attempts to assess this presumption in a structural reliability framework. Therefore, in this study, these structures are examined through the considering SSI in analytical modeling and its influences on their seismic response and behavior. First 5 and 10-story regular buildings were designed with and without SSI modeling based on the current revision of Iranian seismic code. After controlling performance levels and responses based on probabilistic approach, the overturning and sliding factors were examined under seismic intensity levels of 0.35 and 0.65 corresponding to seismic hazard level of DBE (Design Base Earthquake) and MCE (Maximum Considered Earthquake).
It is to be noted that in this study, the elastic behavior of soil was the basic premise assumption. The results show that, with increasing building height and intensity of earthquakes, the SSI phenomenon influenced the structural responses including shear and inter-story drifts and also commence of starting position of damages. The research results indicated that the first damage level probability could be increased up to 30% and the sliding and overturning
probability increased at least 10 percent considering SSI respect to non-SSI assumption. It may be concluded that, especially in areas with high seismicity and soft soils considering SSI can reduce the reliability of this type of structures to attain predetermined performance. Thus, in the case of areas with high seismicity, soft soil and for taller buildings, special attention to the phenomenon of SSI in the seismic assessment of this structural system is necessary.Keywords: Tunnel Form System, Shear Wall, Soil, Structure Interaction, Structural Reliability, Seismic Fragility Analysis -
The problem of non-classical dynamic analysis of structures resting on flexible bases is studied in this paper. Because of the presence of the underlying soil in the dynamic model of structure that acts like an energy sink, the damping matrix is not proportional to structural mass and stiffness, and theoretically a non-classical approach should be followed in modal analysis. Considering one to twenty-story buildings, two types of soils, and several suits of ground motions each containing 10 earthquake records specifically selected for each building, the seismic responses are calculated using a time history modal analysis in this paper. Three cases are considered: fixed-base buildings with classical analysis, flexible-base buildings with classical and non-classical analysis. Using the non-classical analysis, it is shown that soil-structure interaction effects cannot be recommended to be taken into account for moment frame buildings with the fundamental fixed-base periods smaller than one second. Cases for which the base flexibility should be considered for the higher modes are distinguished too. Finally, it is made clear that on each soil type, when the actual non-classical nature of the SSI system must be accounted for.Keywords: Soil, structure interaction, Non, classical, Spectral, Correction factor
-
Recent seismic codes include design requirements in order to take soil-structure interaction (SSI) into account for realistic modelling of structures. The paper investigates the performance of multi-story building-foundation systems through a Winkler-based approach. A set of 4-, 8-, 12- and 16-story steel moment resisting frame buildings on three soil types with shear wave velocities less than 600m/s subjected to actual earthquake records with a probability of exceedance of 10% in 50 years are modeled with and without SSI. It is observed that the performance level of frames supported by flexible foundation, particularly at soft soil sites, may alter significantly in comparison to fixed-base structures. Moreover, the nonlinear foundation is found to have a significant effect on the force and displacement demands. A comparison and brief discussion on the design guidelines for consideration of flexible foundation behavior is also included.Keywords: Soil, structure interaction, Seismic code, Building frame, Nonlinear analysis
-
با توجه به اهمیت اندرکنش خاک-سازه در انتقال حرکت های نیرومند زمین به سازه و پاسخ سازه به این حرکت ها،ضمن توجه به این که مدل های ریاضی و تئوری بر پایه فرضیات خاصی مطرح می شوند، لزوم شناخت رفتار سازه ها به همان صورتی که ساخته می شوند، احساس می شود. در این مقاله، جهت تعیین آثار اندرکنش خاک-سازه در یک تحقیق میدانی، یک مورد از پایه های مسیر روزمینی قطار شهری کرمانشاه که پی آن به صورت گروه شمع می باشد، با بررسی فرکانس های طبیعی و میرایی با استفاده از نتایج آزمایش ارتعاش محیطی و روش های مختلف شناسایی سیستم سازه ها مورد مطالعه قرار می گیرد. بر این اساس خصوصیات دینامیکی سازه ی مورد نظر در دو حالت پایه گیردار و پایه انعطاف پذیرارزیابی می شوند،و سپس نتایج به دست آمده از روش های مختلف شناسایی سیستم با نتایج حاصل از مدل المان محدود مقایسه می گردند. در مجموع، پژوهش حاضر نشان میدهد که در تمامی روش های شناسایی مقادیر فرکانس های طبیعی انطباق مناسبی با هم دارند.
کلید واژگان: شناسایی سیستم، اندرکنش خاک، سازه، فرکانس طبیعی، ارتعاشات محیطی، گروه شمعDuring an earthquake, the dynamic response of a structure located on a soil deposit could be very complex compared with the analysis of the same structure on bedrock due to the interactions between the soil and the structure. This phenomenon is technically termed as Soil-Structure Interaction (SSI) effects in literature. Most of what is currently known about soil-structure interaction (SSI) is based on theoretical and mathematical models. Therefore, it is necessary to investigate the structure treatments when they response to the ground strong motions transferred by SSI. In this regard, in an experimental field, the present study investigated the SSI effects on structure, evaluating the natural frequencies and damping of a pile-group-supported pier of Kermanshah’s LRT. The frequencies and damping evaluations were performed through ambient vibration test results and system identification procedures. The purpose of system identification is to evaluate unknown properties of a system, using known inputs and outputs. There are two principal system identification procedures to build mathematical models of dynamical systems from measured data: (a) non-parametric and (b) parametric procedures. Nonparametric procedures evaluate complex-valued transmissibility functions from the input and output recordings without fitting an underlying model. Accordingly, Fourier Transform (FT), response square of transfer function, peak picking and four spectra are considered as non-parametric procedures. On the other hand, parametric procedures develop numerical models of transfer functions. More precisely, in these procedures, a mathematical model with several parameters is defined first. The considered parameters are featured with specific values determined by experimental results. Then, the system’s input-output function is obtained using this described model. The studied pier was fully instrumented with two SARA and a CEM seismometers. The seismometers recorded signals of two horizontal and a vertical components that were digitally recorded at 200 Hz sampling rate. In general, measure of SSI effects was then obtained by comparing the flexible base and fixed-base parameters to calculate the two most important effects of SSI, period lengthening and foundation damping. SAP 2000 was used to create a finite element model of the whole structure and the accuracy of the model was tested using recorded data from ambient vibration at the structure site. In summary, the current study indicates that all the utilized system identification methods are appropriate in determining the dynamic characteristics of the structure in fixed condition. In addition, it was demonstrated that peak picking and four spectral methods did not have appropriate function in investigating the interaction. However, these two procedures have appropriate function in determining the dynamic characteristics of the structure in fixed condition. As Figure (1) shows, the diagram of the period lengthening obtained from parametric method with the ratio of the structure-to-soil stiffness for the pier is approximately consistent with system identification analyses performed for the 57 sites in Stewart et al. [1]. Accordingly, inertial interaction effects were generally observed to be small for 1/σ < 0.1 and for practical purposes could be neglected in such cases.Keywords: System Identification, Soil, Structure Interaction, Natural Frequency, Ambient Vibration, Pile Foundation -
In this study, the position of the truncation boundary, which is an important issue when modeling the reservoir in the finite element formulation and determining the hydrodynamic pressure on the dam, is investigated. Water in the reservoir is assumed to be compressible, and the Sommerfeld boundary is used to model the far field. The Euler-Lagrange method is used to analyze the reservoir-dam interaction. The serendipity element is used to model the reservoir and dam. The foundation is considered to be rigid. Most researchers assume that the truncation boundary is located three times the total height of the dam away from the dambody, and they use the Sommerfeld boundary at this location. For this purpose, the reservoir was disconnected at different intervals. The Pine Flat Dam is commonly analyzed with a Taft earthquake. The results of the analyses for different positions of the truncation boundary in reservoir models show that the position of the Sommerfeld boundary at five times the height of the damaway fromthe dam body is a proper place for the truncation boundary.Moreover, comparing the results of the present study based on the compressibility of water and those of previous research based on the incompressibility assumption indicates that the maximum hydrodynamic pressure is approximately 153.8% for a Taft earthquake. Therefore, the assumption of water compressibility plays an important role when evaluating the Pine Flat Dam.Keywords: Fluid, Structure Interaction, Dynamic Analysis of Dam, Hydrodynamic Pressure, Euler, Lagrange Method, Truncation Boundary
-
در تحلیل لرزه ای سازه های در تماس با آب، عوامل مختلفی بر پاسخ نهایی سازه تاثیرگذار هستند. یکی از این عوامل لحاظ نمودن تاثیر مستقیم مخزن است که به ویژه در هنگام وقوع زلزله های شدید و در سازه های بلند می تواند حائز اهمیت باشد. با توجه به این امر مطالعات گوناگونی در زمینه تحلیل اندرکنش سازه- سیال در علوم مهندسی مختلف ارائه گردیده است که در این گفتار تحقیقات انجام گرفته در زمینه مهندسی عمران با تکیه بیشتر بر انواع سدها مورد توجه خواهد بود. در تحقیق حاضر ابتدا روش های مختلف تحلیل مسائل اندرکنش سازه- سیال بررسی و سپس نمونه هایی از اعمال این روش ها با استفاده از مطالعات موردی انجام گرفته در زمینه بررسی اثر وجود مخزن بر سازه هایی نظیر دیوار حائل، سدهای بتنی، سدهای سنگریزه ای با پوشش بتنی و سدهای خاکی ارائه خواهد شد. به دلیل گسترش روش های عددی در سالهای اخیر، در تحقیق حاضر مطالعات صورت پذیرفته با روش های عددی با تاکید بیشتری مورد بررسی قرار می گیرد و بر مبنای ادبیات فنی موجود توصیه های کلی در مورد محدوده تاثیر اندرکنش سد- مخزن ارائه می گردد. همچنین مثالهایی از تحلیل های انجام گرفته بر روی سدهای بتنی وزنی و سدهای CFRD که توسط مولفین با نرم افزار ADINA انجام گرفته است، ارائه و نتایج آن با نتایج موجود در ادبیات فنی مقایسه خواهد گردید.
کلید واژگان: اندرکنش سازه، سیال، اندرکنش سد، مخزن، تحلیل دینامیکی، نرم افزار ADINAThere are many parameters that influence the dynamic response of structures in contact with fluid medium. One of these parameters is the direct effect of reservoir، especially for high structures during severe earthquakes، so there are an extensive amount of publications about the analysis of fluid-structure interaction systems in different engineering branches. In this research، studies in the field of civil engineering with an emphasis on dams will be considered. The different methods of analysis of the fluid-structure interaction problems are reviewed and then some case studies for structures such as retaining walls، concrete، CFR and embankment dams، are discussed. Due to the development of numerical methods in recent years، the studies done using such methods are considered with more emphasis. However، analytical methods such as Westergard and Chopra cases are presented and discussed in this paper. Studies in the field of concrete dams are presented in two divisions as modeling approaches and boundary condition effects. Then the studies about the seismic interaction of reservoir-CFR dams are presented in the related section. Also analysis of seismic coupled reservoir-structure systems for a concrete dam and a CFR dam، which have been conducted by the authors with ADINA software، are presented and compared with the results of the previous studies. This comparison shows the accuracy of the results of ADINA software in the field of dynamic coupling of water-structure systems for concrete and CFR dams. Finally، the previous studies for the dynamic interaction of embankment dam-reservoir system are presented and the related results are discussed. It is concluded from reviewing the previous study that the amount of hydrodynamic force in the fluid domain is a function of the frequency content of incident seismic wave and the ratio of the natural frequency of dam to reservoir one. Therefore، there is not a certain height restriction for unconsidering the effect of interaction of reservoir-dam. Also، if the frequency content of energy of seismic wave is less than the natural frequency of reservoir، the effect of considering the coupled water-structure system would be less. Consequently، the final results of such system would be less affected by the reservoir. As another result، if the ratio of the natural frequency of reservoir to dam is almost «2»، the interaction of reservoir-structure has no considerable effect on the final seismic response of coupled system. In the special case of CFR and embankment dams، there are fewer researches in comparison with concrete dams. The main reason can be related to the low slope of upstream face of the dam which reduces the hydrodynamic force of the reservoir. But there are not sufficient available researches that improve the accuracy of such arguments in many different conditions of incident wave (magnitude of PGA، the frequency content of seismic wave، spatial ground motion condition)، and variation of some parameters such as per- meability coefficient of shell materials، height of dam، and slope of upstream face. Therefore، it seems that in the future، more studies should be done in the field of embankment dam-reservoir coupled system.Keywords: Fluid, structure interaction, Dynamic analysis dam, Reservoir interaction, ADINA software
نکته
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.