به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

adaptive neuro-fuzzy inference system

در نشریات گروه پدافند غیرعامل
تکرار جستجوی کلیدواژه adaptive neuro-fuzzy inference system در نشریات گروه فنی و مهندسی
تکرار جستجوی کلیدواژه adaptive neuro-fuzzy inference system در مقالات مجلات علمی
  • محمدحسن نتاج صلحدار

    تشخیص نفوذ یک مسیله طبقه بندی است که در آن روش های مختلف یادگیری ماشین (ML) و داده کاوی (DM) برای طبقه بندی داده های شبکه در ترافیک عادی و حمله استفاده می شود. علاوه بر این، انواع حملات شبکه در طول سال ها تغییر کرد. در این مقاله سعی شد دو مدل از سیستم های تشخیص نفوذ، باهم مقایسه شود، که این مدل ها شامل، شبکه استنتاج عصبی-فازی سازگار (ANFIS) و ماشین های بردار پشتیبان (SVM) می باشند. علاوه بر این چندین نمونه از مجموعه داده های مربوط به سیستم های تشخیص نفوذ را موردبررسی و ارزیابی قرار می دهد. در ادامه، یک روش ترکیبی جدید را بیان می کند که از بهینه سازی ازدحام ذرات (PSO) به منظور ایجاد ترکیب دسته بندها برای ایجاد دقت بهتر برای تشخیص نفوذ، استفاده کرده است. نتایج آزمایش نشان می دهد که روش جدید می تواند کارایی بهتری بر اساس معیارهای مختلف ارزیابی، ارایه کند. این مقاله مجموعه داده های مختلف را برای ارزیابی مدل IDS فهرست می کند و کارایی روش ترکیبی پیشنهادی بر مجموعه داده های IDS را موردبحث قرار می دهد که می تواند برای استفاده از مجموعه داده ها برای توسعه IDS مبتنی بر ML و DM کارآمد و موثر بوده و مورداستفاده قرار گیرد.

    کلید واژگان: سیستم تشخیص نفوذ، شبکه عصبی-فازی، ماشین های بردار پشتیبان، دسته بندی کننده
    MohammadHassan Nataj Solhdar

    Intrusion detection is a classification problem in which various machine learning (ML) and data mining (DM) techniques are used to classify network data in normal traffic and attack. In addition, the types of network attacks have changed over the years. This paper tries to compare two models of intrusion detection systems, which include adaptive neuro-fuzzy inference systems (ANFIS) and support vector machines (SVM). In addition, it examines and evaluates several instances of data sets related to intrusion detection systems. In the following, a new hybrid method is proposed that uses Particle Swarm Optimization (PSO) to create a classifier combination to provide better accuracy for intrusion detection. Experimental results show that the new method can produce a better performance based on different evaluation criteria. This paper lists the different datasets for evaluating the IDS model and discusses the performance of the proposed hybrid method on the IDS datasets that can be used to efficiently and effectively use the datasets to develop IDS based on ML and DM.

    Keywords: Intrusion detection system, adaptive neuro-fuzzy inference system, support vector machines, classifier
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال