به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

domain generation algorithms (dgas)

در نشریات گروه پدافند غیرعامل
تکرار جستجوی کلیدواژه domain generation algorithms (dgas) در نشریات گروه فنی و مهندسی
تکرار جستجوی کلیدواژه domain generation algorithms (dgas) در مقالات مجلات علمی
  • مهدی اسدی، سعید پارسا*، وحید وثوقی

    هر شبکه بات گروهی از میزبان هایی است که با کد بدخواه یکسانی آلوده شده و از طریق یک یا چند سرویس دهنده فرمان و کنترل توسط مهاجم یا مدیر بات هدایت می شوند. در شبکه های بات نسل جدید فهرست نام های دامنه سرویس دهنده های فرمان و کنترل به صورت پویا ایجاد می شود. این فهرست پویا که توسط یک الگوریتم تولید دامنه ایجاد می شود به مهاجم کمک می کند تا مکان سرویس دهنده های فرمان و کنترل خود را به صورت دوره ای تغییر داده و از قرار گرفتن آدرس های آن ها در فهرست های سیاه جلوگیری کند. هر میزبان آلوده با استفاده از یک الگوریتم از پیش تعریف شده، تعداد زیادی نام دامنه تولید کرده و با ارسال پرس وجوهای سرویس دهنده دامنه تلاش می کند آن ها را به آدرس های متناظرشان نگاشت کند. در این مقاله، از الگوریتم شبکه عصبی خود رمزگذار عمیق برای شناسایی دامنه هایی که هیچ گونه آگاهی از الگوریتم تولید آن ها وجود نداشته است، استفاده شده و عملکرد روش پیشنهادی با عملکرد الگوریتم های یادگیری ماشین مقایسه شده است. ابتدا مجموعه داده جدیدی از ترکیب یک مجموعه داده با دامنه های سالم و دو مجموعه داده حاوی دامنه های بدخواه و ناسالم ایجادشده و از دو سناریوی دستی و خودکار برای استخراج ویژگی های مجموعه داده جدید استفاده شده است. شبکه عصبی خود رمزگذار عمیق بر روی مجموعه داده جدید و پیش پردازش شده اعمال شده و نتایج در مقایسه با الگوریتم های یادگیری ماشین بررسی شده است. با توجه به نتایج به دست آمده، می توان با استفاده از شبکه عصبی خود رمزگذار عمیق، دامنه های بدخواه تولیدشده توسط الگوریتم های تولید دامنه را با سرعت بیشتر و نرخ صحت بیشتر از 98.61% شناسایی کرد.

    کلید واژگان: شبکه بات، الگوریتم های تولید دامنه، استخراج ویژگی، شبکه عصبی عمیق، شبکه عصبی خود رمزگذار عمیق
    M. Asadi, S. Parsa *, V. Vosoughi

    Botnet is a group of hosts infected with the same malicious code and managed by an attacker or Botmaster through one or more command and control (C&C) servers. The new generation of Botnets generates C&C domain name  server’s list dynamically. This dynamic list created by a domain generation algorithm helps an attacker to periodically change its C&C servers and prevent their addresses from being blacklisted. Each infected host generates a large   number of domain names using a predefined algorithm and attempts to map them to their corresponding addresses by sending queries to the domain server. In this paper, the deep autoencoder neural network is used to identify domains without any knowledge of their generating algorithm, and the performance of the proposed method is compared with the performance of machine learning algorithms. Initially, a new dataset is created by combining a data set with normal domains and two datasets containing malicious and abnormal domains and both manual and automated   methods are used to extract the features of the new dataset. Deep autoencoder neural network is applied to new and pre-processed datasets and the results are compared with machine learning algorithms. Based on the obtained results, it is possible to identify the malicious domains generated by domain generating algorithms using the deep autoencoder neural network with a higher speed and an accuracy rate larger than 98.61%.

    Keywords: Botnet, Domain Generation Algorithms (DGAs), Feature Extraction, Deep Neural Network, Deep Autoencoder Neural Network
  • مهدی اسدی، محمدعلی جبرئیل جمالی*، سعید پارسا، وحید مجیدنژاد

    الگوریتم های تولید دامنه در شبکه های بات به عنوان نقاط ملاقات مدیر بات با خدمت دهنده فرمان و کنترل آن ها مورداستفاده قرار می گیرند و می توانند به طور مداوم تعداد زیادی از دامنه ها را برای گریز از تشخیص توسط روش های سنتی از جمله لیست سیاه،تولید کنند. شرکت های تامین کننده امنیت اینترنتی، معمولا لیست سیاه را برای شناسایی شبکه های بات و بدافزارها استفاده می کنند، اما الگوریتم تولید دامنه می تواند به طور مداوم دامنه را به روز کند تا از شناسایی لیست سیاه جلوگیری کند. شناسایی شبکه های بات مبتنی بر الگوریتم تولید دامنه یک مسئله چالش برانگیز در امنیت سامانه های کامپیوتری است. در این مقاله، ابتدا با استفاده از مهندسی ویژگی ها، سه نوع ویژگی (ساختاری، آماری و زبانی) برای تشخیص الگوریتم های تولید دامنه استخراج شده و سپس مجموعه داده جدیدی از ترکیب یک مجموعه داده با دامنه های سالم و دو مجموعه داده با الگوریتم های تولید دامنه بدخواه و ناسالم تولید می شود. با استفاده از الگوریتم های یادگیری ماشین، رده بندی دامنه ها انجام شده و نتایج به صورت مقایسه ای جهت تعیین نمونه با نرخ صحت بالاتر و نرخ مثبت نادرست کمتر جهت تشخیص الگوریتم های تولید دامنه مورد بررسی قرار می گیرد. نتایج به دست آمده در این مقاله، نشان می دهد الگوریتم جنگل تصادفی، نرخ صحت، نرخ تشخیص و مشخصه عملکرد پذیرنده بالاتری را به ترتیب برابر با 32/89%، 67/91% و 889/0 ارایه می دهد. همچنین در مقایسه با نتایج سایر الگوریتم های بررسی شده، الگوریتم جنگل تصادفی نرخ مثبت نادرست پایین تری برابر با 373/0 نشان می دهد.

    کلید واژگان: شبکه بات، الگوریتم های تولید دامنه، الگوریتم های یادگیری ماشین، فهرست سیاه، خدمت دهنده فرمان و کنترل
    M. Asadi, M. A. Jabraeil Jamali *, S. Parsa, V. Majidnezhad

    Domain generation algorithms (DGAs) are used in Botnets as rendezvous points to their command and control (C&C) servers, and can continuously provide a large number of domains which can evade detection by traditional methods such as Blacklist. Internet security vendors often use blacklists to detect Botnets and malwares, but the DGA can    continuously update the domain to evade blacklist detection. In this paper, first, using features engineering; the three types of structural, statistical and linguistic features are extracted for the detection of DGAs, and then a new dataset is produced by using a dataset with normal DGAs and two datasets with malicious DGAs. Using supervised machine learning algorithms, the classification of DGAs has been performed and the results have been compared to determine a DGA detection model with a higher accuracy and a lower error rate. The results obtained in this paper show that the random forest algorithm offers accuracy rate, detection rate and receiver operating characteristic (ROC) equal to 89.32%, 91.67% and 0.889, respectively. Also, compared to the results of the other investigated algorithms, the random forest algorithm presents a lower false positive rate (FPR) equal to 0.373.

    Keywords: Botnet, Domain Generation Algorithms (DGAs), Machine Learning Algorithms, Blacklist, C­&­C Server
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال