به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه « Hyperviscoelastic » در نشریات گروه « فنی و مهندسی »

  • Z Matin, Mahdi Moghimi Zand *, M Tehrani
    Predicting the nonlinear response of biological tissues is challenging issue, due to strain rate- (short term) and time-dependent (long-term) nature of its response. While many of the tissue properties have already been extensively examined, some are left unnoticed, such as dependence of the stress-relaxation behavior on the strain levels. In this paper, a hyperviscoelastic constitutive model is derived within the integral form presented by Pipkin and Rogers model to remove this limitation. In the suggested model, the hyperelastic and short-term viscous parts are represented by the suitable strain energy function. The long-term viscous function includes the deformation history, which is expressed through a tensorial-relaxation function and has not been considered elsewhere. The constitutive model involves a number of material parameters. The values of those are identified from experimental data for Adiprene-L100 as a tissue-equivalent material. Parameters appearing in constitutive law are estimated by fitting the model with the experimental data. It is assumed that the tissue phantom is slightly compressible, isotropic and homogenous. The obtained results indicate that the presented model can describe the nonlinearity, strain rate- (short-term) and time-dependent (long-term) effects of materials. The validation of the model is investigated and shows very good agreement with the experimental data.
    Keywords: Hyperviscoelastic, modeling, Tissue-equivalent material, Strain-dependent, Stress-relaxation behavior}
  • A. Eslaminejad, M. Hosseini Farid, M. Ziejewski, G. Karami*
    Traumatic brain injury (TBI) often happens due to assaulting loads such as blast on the human head. Finite elements (FEs) can approximately simulate the blast interactions with the human head. An important parameter in the FE modelling procedures is the accuracy of constitutive formulation of the brain tissue. This paper is focusing on implementation of three brain tissue constitutive relations to measure and compare the dynamic behaviour of the brain under identical blast loads. For the geometry, we employ a simple spherical head model to monitor the brain tissue response and examine the uncertainties in FE brain tissue constitutive modelling. The brain tissue is constitutively modelled as hyperelastic, viscoelastic, and hyperviscoelastic type material. Intracranial pressures (ICP), strains, and shear stresses as the dynamic parameters are measured with time. These biomechanical parameters can be compared against the injury thresholds. Our analyses show that although the results for ICPs and strains are close for the three models, however, shear stresses are considerably different. The study will further provide new insight into selecting a proper constitutive model of the brain tissue under dynamic conditions.
    Keywords: Blast Traumatic Brain Injury, Finite Element Modelling, Brain Tissue Constitutive Model, Viscoelastic, Hyperviscoelastic}
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال