به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

kernel functions

در نشریات گروه کشاورزی
تکرار جستجوی کلیدواژه kernel functions در مقالات مجلات علمی
  • سید مسعود سلیمان پور*، پارسا حقیقی
    شناسایی، پیش بینی و مدیریت بحران در یک ساختار اقلیمی از اهمیت بالایی برخوردار است. مدل ها به عنوان ابزارهایی کاربردی برای درک سیستم های پیچیده و شبیه سازی و پیش بینی رفتارشان استفاده می شوند. ماشین های بردار پشتیبان یکی از روش های یادگیری نظارت شده است که از آن برای طبقه بندی و رگرسیون استفاده می شود. ماشین های بردار پشتیبان قادر به تشخیص الگوهای پنهان و پاسخ به تغییرات پیچیده در داده های اقلیمی هستند. در این مقاله ساختار روش ماشین های بردار پشتیبان و کاربرد آن در طبقه بندی داده های اقلیمی ارائه شده است. ویژگی های ساختار ماشین های بردار پشتیبان به انتخاب نوع تابع هسته مربوط است بنابراین در انتخاب نوع تابع هسته دقت کافی باید صورت گیرد و از طرفی تعیین مولفه اصلی در پیش بینی اقلیمی یک مرحله مهم در پیش بینی اقلیمی است تا با تعداد پارامترهای بهینه بهترین برازش بین داده های پیش بینی کننده و پیش بینی شونده صورت گیرد.
    کلید واژگان: ماشین های بردار پشتیبان، پیش بینی اقلیمی، توابع هسته، تعیین مولفه اصلی
    Seyed Masoud Soleimanpour *, Parsa Haghighi
    Identifying, predicting and managing crisis in a climate structure is of great importance. Models are used as practical tools for understanding complex systems and simulating and predicting their behavior. Support vector machines are one of the supervised learning methods used for classification and regression. Support vector machines are able to detect hidden patterns and respond to complex changes in climate data. In this article, the structure of the support vector machine method and its application in climate data classification are presented. The characteristics of the structure of support vector machines are related to the selection of the kernel function type, so sufficient care must be taken in the selection of the kernel function type And on the other hand, PCI in climate forecasting is an important step in climate forecasting in order to make the best fit between forecasting and predicted data with the optimal number of parameters.
    Keywords: support vector machines, climate forecasting, kernel functions, PCI
  • سعید صمدیان فرد *، سجاد هاشمی، مجتبی ایزدیار
    تبخیر یکی از اصلی ترین فرایندها در چرخه ی آبی طبیعت و یکی از مهمترین عوامل در مطالعات کشاورزی، هیدرولوژیکی، هواشناسی، بهره برداری مخازن، طراحی سیستم های آبیاری و زهکشی، زمان بندی آبیاری و مدیریت منابع آب می باشد. بنابراین شبیه سازی هرچه دقیق تر مقدار تبخیر از اهمیت بالایی در مطالعات هیدرولوژیکی برخوردار است. در این راستا و در تحقیق حاضر، از روش های هوشمند برنامه ریزی ژنتیک، رگرسیون بردار پشتیبان و شبکه عصبی مصنوعی برای برآورد و شبیه سازی مقادیر تبخیر از تشت در ایستگاه های هواشناسی تبریز و جلفا استفاده شده است بدین منظور، از داده های هواشناسی تبخیر، دما، رطوبت نسبی، سرعت باد و تابش خورشیدی ایستگاه های مذکور در بازه زمانی بیست ساله (1390-1371) استفاده شده و دقت روش های مورد مطالعه با استفاده از پارامترهای آماری جذر میانگین مربعات خطا، میانگین خطای مطلق، ضریب همبستگی و همچنین دیاگرام تیلور مورد بررسی قرار گرفت. نتایج حاصل از این پژوهش نشان دادند که در بهینه ترین حالت و به ترتیب در ایستگاه های تبریز و جلفا، برنامه ریزی ژنتیک با دارا بودن خطای 2. 18 و 2. 68، رگرسیون بردار پشتیبان با خطای 2. 19 و 2. 22 و شبکه عصبی مصنوعی با خطای 2. 14 و 2. 21 عملکرد مناسبی در شبیه سازی مقدار تبخیر داشته اند. در نهایت برای ایستگاه تبریز سناریو دوم روش شبکه عصبی مصنوعی با پارامترهای ورودی دما و سرعت باد و برای ایستگاه جلفا سناریو هفتم روش شبکه عصبی مصنوعی با پارامترهای ورودی دما، رطوبت نسبی، سرعت باد و تابش خورشیدی و دارا بودن بهترین عملکرد، به عنوان مدل هایی با دقت مناسب برای شبیه سازی مقدار تبخیر از تشت پیشنهادگردید.
    کلید واژگان: شبکه عصبی مصنوعی، توابع کرنل، تحلیل آماری، مدیریت منابع آب
    Saeed Samadianfard *, Sajjad Hashemi, Mojtaba Izadyar
    Evaporation is the one of main processes in the hydrological cycle, and one of the most important factors in the related studies, namely agriculture, hydrology, aerology, exploitation of reservoirs, designing of irrigation and drainage systems, irrigation scheduling, and water resources management. Therefore, accurate simulation of evaporation rates has of the high importance in hydrology researches. In this regard, intelligent methods of Genetic Programming, Support Vector Regression, and Artificial Neural Networks have been used for evaluation and simulation of the pan evaporation rates over Tabriz and Golfa synoptic stations, in the present research. For this purpose, meteorological data including evaporation, temperature, relative humidity, wind speed, and solar radiation during the period of 1993-2013 were used and the accuracy of studied methods were investigated by using statistical parameters of root mean square error, mean absolute error, correlation coefficient and Taylor diagram. The results showed that in the optimum case of Tabriz and Golfa stations, genetic programming with error of 2.18 and 2.68, support vector regression with error of 2.19 and 2.22, and artificial neural network with error of 2.14 and 2.21, respectively, had reasonable performance in evaporation simulation. Conclusively, the second scenario of artificial neural network method through the input parameters of temperature and wind speed and the seventh scenario of artificial neural network method through the input parameters of temperature, humidity, wind speed, and solar radiation by having the best performance, were suggested as the accurate models with reasonable precision for simulating pan evaporation at Tabriz and Golfa stations, respectively.
    Keywords: artificial neural network, Kernel functions, statistical analysis, water resources management
  • محمد عیسی زاده*، حجت احمدزاده، محمدعلی قربانی
    سابقه و هدف
    پیش بینی دقیق رواناب رودخانه ها نقش مهمی در مدیریت بهینه منابع آب در دسترس دارد. در سال های اخیر، ماشین بردار پشتیبان (SVM) که یکی از مهمترین مدل های داده کاوی است برای این منظور مورد توجه قرار گرفته است. این مدل یک سیستم یادگیری کارآمد بر مبنای تئوری بهینه سازی مقید است که از اصل استقرای کمینه سازی خطای ساختاری استفاده کرده و منجر به یک جواب بهینه کلی می گردد. همانند مدل های داده کاوی دیگر مدل SVM نیز می تواند در مواقعی که فقط داده های رواناب در دسترس می باشد جهت شبیه سازی رواناب مورد استفاده قرار گیرد (مدل سازی خودهمبسته). به طور معمول سه تابع کرنل پایه شعاعی (RBF)، چند جمله ای درجه d و خطی در ماشین بردار پشتیبان مورد استفاده قرار می گیرند که کاربرد هر یک از این توابع با پارامترهای مختلف در تخمین رواناب رودخانه ها ممکن است منجر به نتایج متفاوتی شود. بنابراین ارزیابی کارایی و دقت هر یک از این توابع و انتخاب تابع کرنل مناسب در پیش بینی جریان رودخانه ضروری است. همچنین از آنجا که مدل های سری زمانی AR، ARMA و ARIMA از مدل های اصلی در شبیه سازی خودهمبسته رواناب می باشند لذا می توان از طریق مقایسه عملکرد هر یک از توابع کرنل با این مدل ها، دقت نسبی این توابع در این زمینه را مورد بررسی قرار داد. بنابراین ارزیابی دقت هر یک از توابع کرنل در شبیه سازی رواناب ماهانه و مقایسه عملکرد آنها با مدل های سری زمانی هدف اصلی این تحقیق را رقم می زند.
    مواد و روش ها
    در این تحقیق حوضه خرخره چای به عنوان منطقه مورد مطالعه انتخاب شده و جریان ماهانه مشاهداتی این حوضه در ایستگاه آب سنجی سنته جهت واسنجی و اعتبارسنجی مدل ها بکار گرفته شد. برای این منظور، در ابتدا 75 درصد از داده های جریان ماهانه (1384-1367) برای واسنجی مدل ها انتخاب شده و 25 درصد داده ها (1390-1385) جهت اعتبارسنجی مدل ها استفاده شد. سپس توزیع احتمالاتی داده های جریان ماهانه در ایستگاه آب سنجی سنته براساس آزمون-های کلموگروف- اسمیرنوف و شاپیرو- ویلک مورد بررسی قرار گرفته و نرمال سازی توزیع داده ها انجام گرفت. پس از بهینه سازی پارامترهای مربوط به هر یک از توابع کرنل، مقادیر جریان ماهانه در ایستگاه آب سنجی سنته پیش بینی شده و عملکرد این توابع با استفاده از جذر میانگین مربعات خطا (RMSE) و ضریب همبستگی (CC) مورد ارزیابی قرار گرفت.
    یافته ها
    بررسی های این تحقیق نشان داد که اگرچه تفاوت معنی دار بین نتایج سه تابع کرنل وجود ندارد، ولی تابع کرنل چند جمله ای درجه 4 با مقادیر ضریب همبستگی و جذر میانگین مربعات خطا به ترتیب برابر با 86/0 و 88/5 (مترمکعب در ثانیه) در دوره تست، در مقایسه با توابع کرنل دیگر از دقت بالا و عملکرد بهتری در پیش بینی جریان ماهانه برخوردار است. همچنین نتایج نشان داد که مدل (6،2)ARMA با مقادیر ضریب همبستگی و مجذور میانگین مربعات خطا به ترتیب برابر با 82/0 و 47/6 (مترمکعب در ثانیه) در دوره تست، نسبت به سایر مدل های سری زمانی عملکرد خوبی را در پیش بینی جریان ماهانه حوضه خرخره چای دارا می باشد.
    نتیجه گیری
    در نهایت مقادیر جریان ماهانه پیش بینی شده با استفاده از تابع کرنل چند جمله ای درجه 4 (به عنوان نماینده مدل SVM) با نتایج مدل (6،2)ARMA (به عنوان نماینده مدل های سری زمانی) مقایسه گردید و این نتیجه حاصل شد که مدل SVM از کارایی بهتری نسبت به مدل های سری زمانی در پیش بینی جریان ماهانه حوضه خرخره چای برخوردار است.
    کلید واژگان: پیش بینی جریان رودخانه، ماشین بردار پشتیبان، توابع کرنل، مدل های سری زمانی، حوضه خرخره چای
    Mohammad Isazadeh*, Hojat Ahmadzadeh, Mohammad Ali Ghorbani
    Background And Objectives
    Accurate prediction of river flow has an important role in the optimum management of available water resources. In recent years, support vector machine (SVM) that is one of the most important data-driven models, has been considered in this regards. This model is a useful learning system based on constrained optimization theory that uses induction of structural error minimization principle and results a general optimized answer. Such as other data mining models, the SVM model can also be used for runoff simulation when the only available data is runoff (autoregressive simulation). Typically, three kernel functions, namely, radial basis, polynomial of degree d and linear are applied in SVM that use of each function with various parameters for river flow estimation may have different results. Therefore, it is necessary to evaluate the accuracy of each of these functions and select the appropriate kernel function for runoff simulation. Since time series models, namely, AR, ARMA and ARIMA are the main models for autoregressive simulation of runoff, relative accuracy of kernel functions can be investigated by comparing their performance with these models. Therefore, assessment of the accuracy of kernel functions for monthly river flow simulation and comparison of their performance with time series models is main aim of this study.
    Materials And Methods
    In this study Kherkherehchiy river basin was selected as the study area and observed monthly river flow of this basin in the Santeh gauging station were applied for calibration and validation of models. For this purpose, first 75 percent of monthly river flow data (1367-1384) were selected to calibrate models and 25 percent of data (1385-1390) were used to validate models. Next, probability distribution of monthly river flow data in Santeh station were studies based on Kolmogorov-Smirnov and Shapiro- Wilk test and then normalization of data distribution were done. After optimization of parameters for each kernel functions the monthly flow values were predicted in Santeh station and the performance of these functions were evaluated using root mean square errors (RMSE) and the correlation coefficient (CC).
    Results
    The investigations of this study indicated that although there is no significant difference in the results of three kernel functions, but the polynomial kernel function of degree 4 with CC and RMSE values of 0.86 and 5.88 (m3/sec) respectively in the testing period, has high accuracy and better performance in prediction of monthly flow in comparison to other kernel functions. Also the results showed that ARMA(6,2) with CC and RMSE values of 0.82 and 6.47 (m3/sec) respectively in the testing period, has good performance in prediction of Kherkherehchiy monthly flow compared to the other time series models.
    Conclusion
    Finally, the predicted monthly river flow using polynomial kernel function of degree 4 (as a representative of SVM model) was compared with the results of ARMA(6,2) (as a representative of time series model) and this conclusion was obtained that the SVM model has a better performance than time series models in the monthly river flow prediction of the Kherkherehchiy basin
    Keywords: River Flow Prediction, Support Vector Machine, Kernel functions, Time Series Models, Kherkherehchiy River Basin
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال