boosted regression trees
در نشریات گروه مکانیزاسیون کشاورزی-
طبقه بندی داده های نامتعادل به یک موضوع تحقیقاتی مهم در زمینه داده کاوی تبدیل شده است. هدف از انجام این پژوهش شناسایی صحیح نمونه های کلاس اقلیت و افزایش دقت طبقه بندی کلاس های خاک با استفاده از رویکرد مدل تجمعی در بخشی از اراضی جنوب غربی استان زنجان است. تعداد 148 خاکرخ با روش الگوی شبکه بندی منظم و میانگین فاصله 500 متر حفر، تشریح و با تجزیه و تحلیل آزمایشگاهی تا سطح فامیل رده بندی گردید. مناسب ترین متغیرهای محیطی بر اساس نظر کارشناسی و رویکرد تحلیل مولفه اصلی از میان 57 متغیر شامل اطلاعات نقشه های ژیومورفولوژی و زمین شناسی، مدل رقومی ارتفاع و داده های حاصل از تصاویر ماهواره ای لندست 8 برای پیش بینی کلاس های خاک انتخاب شد. مدل سازی رابطه خاک - زمین نما با استفاده از الگوریتم های یادگیرنده جنگل تصادفی، درخت تصمیم توسعه یافته و رگرسیون لجستیک چندجمله ای و مدل تجمعی (بعد از متعادل سازی داده ها) در محیط نرم افزار "Rstudio" انجام شد. صحت کلی و ضریب کاپا برای ارزیابی کلاس های خاک در سطح زیرگروه به ترتیب در مدل های فردی رگرسیون لجستیک چندجمله ای 65 درصد و 0/41، جنگل تصادفی 65 درصد و 0/32، درخت تصمیم توسعه یافته 60 درصد و 0/35 و در مدل تجمعی 70 درصد و 0/62 به دست آمد. نتایج صحت کاربر و صحت تولیدکننده نشان داد در میان مدل های فردی، مدل رگرسیون لجستیک چندجمله ای دقت بالاتری در پیش بینی کلاس های خاک دارد.
کلید واژگان: رگرسیون لجستیک چندجمله ای، داده های نامتعادل، متعادل سازی داده، کلاس اقلیتIntroductionImbalanced data remains a widespread and significant challenge, particularly impacting machine learning algorithms. Therefore, addressing imbalanced data classification has emerged as a crucial research area within the field of data mining. This issue, often characterized by a limited number of instances in one class and a substantial number in other classes, poses substantial hurdles for machine learning algorithms. Consequently, data mining experts and machine learning professionals are actively working on refining methods and models for classifying imbalanced data with the aim of improving the accuracy of such classifications. The principal objective of this study is to precisely detect and categorize samples from the minority class, ultimately enhancing the precision of soil class classification. This research is conducted in a specific region, encompassing the southwestern territories of Zanjan province.
Materials and MethodsTo achieve this objective, a total of 148 soil profiles were excavated using a regular grid pattern with an average spacing of 500 meters (and in some locations, up to 700 meters based on expert recommendations). After the samples were air-dried, they were transported to the laboratory. Physical and chemical analyses were conducted on all collected samples, including assessments of soil texture, soil pH, calcium carbonate equivalent, cation exchange capacity, electrical conductivity, organic carbon content, and gypsum content. Subsequently, the soil samples were meticulously classified and described up to the family level, following the comprehensive standards of the soil classification system. The most appropriate covariates were selected among 57 covariates including geomorphological and geological maps, digital elevation model (DEM), and data from Landsat 8 satellite images, using principal component analysis (PCA) and expert knowledge approaches for predicting soil classes selected. Saga-GIS and ENVI software were used to extract environmental covariates. Modeling of the soil-landscape relationship was performed using three algorithms, namely multinomial logistic regression (MNLR), random forest (RF), boosted regression tree (BRT) and ensemble model (after data balancing) in “R studio” software. To check the accuracy of the used model, the data was randomly divided into training and validation data. 80% of the data (118 profiles) were used for model training and 20% (30 profiles) were used as validation data for evaluation.
Results and DiscussionThe results of the selection of covariates showed that 10 information covariates of geomorphological maps, geological information and features extracted from the digital elevation model (DEM), including Analytical hill shading (AHS), sunrise, valley depth (VD), LS Factor, Channel network distance (CND), Topographic wetness index (TWI) and Multi-resolution ridge top flatness (MRRTF) were selected as input variables. Based on the results of profile analysis, the soils of the region at the subgroup level were categorized into five classes, with imbalanced distribution, including Typic Calcixerepts, Typic Haploxerepts, Gypsic Haploxerepts, Typic Xerorthents, and Lithic Xerorthents. The results of evaluation metrics such as overall accuracy and Kappa index were 65% and 0.32 for the RF algorithm, %60 and 0.35 for the boosted regression tree algorithm, 65% and 0.41 for the MNLR algorithm and after balancing the data with the ensemble model approach, it was 70% and 0.62 respectively. The results of two statistics of user’s accuracy and producer’s accuracy showed that among individual models, the multinomial logistic regression model has higher accuracy in predicting soil classes. Although the ensemble model has succeeded in predicting the soil minority classes well, due to the fact that the two weaker models of the RF and BRT are involved in the modeling, It showed lower values compared to the individual multinomial logistic regression model, in predicting some classes of the majority of soil, especially the two classes of Typic Haploxerepts and Typic Xerorthents.
ConclusionsIn summary, the results have demonstrated that when learning algorithms are individually applied, they do not exhibit high accuracy in spatially predicting soil classes. However, when these algorithms are amalgamated into an ensemble model, they exhibit remarkable accuracy in spatial soil class prediction, outperforming individual models in terms of performance and accuracy. Moreover, the ensemble model substantially enhances prediction accuracy and reduces the occurrence of misclassifications, especially at the subgroup level. While each specific model excels in predicting a particular soil classification, the cumulative ensemble models consistently outperform individual models in terms of overall performance and accuracy, underscoring the effectiveness of ensemble modeling in improving spatial soil classification.
Keywords: Boosted Regression Trees, Data balancing, Imbalanced dataset, Minority -
علی رغم استفاده گسترده از روش های نقشه برداری رقومی خاک در مطالعات خاکشناسی، محدودیت های مربوط به عدم تعادل کلاس های خاک مانع عملکرد موفقیت آمیز بسیاری از الگوریتم های یادگیری ماشین در این روش ها شده است. از اینرو هدف از این پژوهش بهبود عملکرد مدل سازی داده های نامتعادل خاک با استفاده از روش پیش درمانی نمونه گیری مجدد در سه مدل پیش بینی شامل جنگل تصادفی، درخت تصمیم توسعه یافته و رگرسیون لجستیک چندجمله ای در بخشی از اراضی استان زنجان است. برای این منظور موقعیت 148 خاک رخ مشاهداتی بر اساس الگوی شبکه بندی منظم با فاصله 500 متر حفر و بر اساس استانداردهای سیستم جامع رده بندی خاک تشریح و طبقه بندی گردید. متغیرهای محیطی شامل اطلاعات نقشه های ژیومورفولوژی و زمین شناسی، مدل رقومی ارتفاع و داده های حاصل از تصاویر ماهواره ای لندست 8 بودند که بر اساس نظر کارشناسی و رویکرد تحلیل مولفه اصلی تعدادی از متغیرهای محیطی به عنوان موثرترین متغیرهای محیطی و ورودی مدل انتخاب گردید. مدل سازی با استفاده از داده های نامتعادل، منجر به از دست دادن کلاس های با مشاهده های کم تعداد برای هر سه مدل بود. در این شرایط مدل رگرسیون لجستیک چندجمله ای بالاترین دقت (66%) و ضریب کاپا (0/41) را نسبت به دو مدل دیگر نشان داد. پس از نمونه برداری مجدد داده ها در قالب فرآیند متعادل سازی، مدل درخت تصمیم توسعه یافته با حفظ کلاس های کم تعداد با صحت کلی 75% و ضریب کاپا 0/64 در پیش بینی مکانی زیرگروه های خاک، برآورد قابل قبولی ارایه داد.
کلید واژگان: بیش نمونه گیری، پیش تیمار داده، درخت تصمیم توسعه یافته، کلاس اقلیت، نمونه برداری مجددDespite the great use of digital soil maps, the problems of imbalance in classification disrupt the classification performance of many machine learning algorithms, and for this reason, it has attracted the attention of many researchers. Therefore, the aim of this research is to improve the classification of unbalanced soil data using resampling pretreatment technique in three forecasting models including Random forest (RF), Boosted regression trees (BRT) and Multinomial logistic regression (MNLR) in a part of the lands of Zanjan province in Iran.Sampling was done based on a regular grid pattern with 500 meters intervals, and 148 soil surfaces were randomly studied and classified. The region's soils at the subgroup level were in five classes with imbalanced distribution, including Typic Calcixerepts, Typic Haploxerepts, Gypsic Haploxerepts, Typic Xerorthents, and Lithic Xerorthents. Environmental covariates included geomorphological and geological maps, digital elevation model (DEM), and remote sensing (RS), selected by principal component analysis (PCA) and expert knowledge methods AND a number of environmental variables including geomorphological map information, Geological information and features extracted from the DEM were selected as the most effective environmental variables for predicting soil classes and as input to the model. Extraction of environmental covariates was done in ENVI and SAGA_GIS software and modeling of soil-landscape relationship was done using the aforementioned algorithms in Rstudio software. The resampling technique was applied to the minority and majority soil classes prior to modeling.The results showed that using original data that have imbalanced classes for mapping resulted in loss of the minority classes and relatively low Kappa agreement values and overall accuracy for RF (ovrall=65%, k=0.32) and BRT models (ovrall=60%, k=0.35). However, after resampling the data, two overall accuracy and Kappa coefficient statistics increased in all models. In addition, the BRT model provided an acceptable estimate by maintaining the minority classes and the Kappa coefficient of 0.64 and the overall accuracy of 75% in the spatial prediction of soil subgroups. The producer accuracy (PA) and user accuracy (UA) results showed that the two classes of Gypsic Haploxerepts and Lithic Xerorthents, which were excluded when training using imbalanced datasets in RF and BRT algorithms, showed significant improvement after balancing the data. Results show that they were well predicted in RF algorithm (UA =100%, 78%) and BRT algorithm (UA= 60% and 70%) using treated data. Also, these minority classes showed Producer accuracy in RF algorithm (PA= 75%, 88%) and BRT algorithm (PA=100%, 78%) in compared to zero accuracy when training using imbalanced data. On the other hand, the validation results of the MNLR algorithm showed that despite maintaining the minority classes after balancing the data, the minority classes were predicted with less accuracy. Results showed that modeling using imbalanced distribution of class observation caused uncertain maps with minority classes being lost and relatively poor accuracies. After data treatment, with over- and under-sampling, all models showed significant improvement in maintaining the minority classes, in evaluations. Data resampling technique can be a useful solution for dealing with imbalanced class observations to produce more certain digital soil maps.
Despite the great use of digital soil maps, the problems of imbalance in classification disrupt the classification performance of many machine learning algorithms, and for this reason, it has attracted the attention of many researchers. Therefore, the aim of this research is to improve the classification of unbalanced soil data using resampling pretreatment technique in three forecasting models including Random forest (RF), Boosted regression trees (BRT) and Multinomial logistic regression (MNLR) in a part of the lands of Zanjan province in Iran.Sampling was done based on a regular grid pattern with 500 meters intervals, and 148 soil surfaces were randomly studied and classified. The region's soils at the subgroup level were in five classes with imbalanced distribution, including Typic Calcixerepts, Typic Haploxerepts, Gypsic Haploxerepts, Typic Xerorthents, and Lithic Xerorthents. Environmental covariates included geomorphological and geological maps, digital elevation model (DEM), and remote sensing (RS), selected by principal component analysis (PCA) and expert knowledge methods AND a number of environmental variables including geomorphological map information, Geological information and features extracted from the DEM were selected as the most effective environmental variables for predicting soil classes and as input to the model. Extraction of environmental covariates was done in ENVI and SAGA_GIS software and modeling of soil-landscape relationship was done using the aforementioned algorithms in Rstudio software. The resampling technique was applied to the minority and majority soil classes prior to modeling.The results showed that using original data that have imbalanced classes for mapping resulted in loss of the minority classes and relatively low Kappa agreement values and overall accuracy for RF (ovrall=65%, k=0.32) and BRT models (ovrall=60%, k=0.35). However, after resampling the data, two overall accuracy and Kappa coefficient statistics increased in all models. In addition, the BRT model provided an acceptable estimate by maintaining the minority classes and the Kappa coefficient of 0.64 and the overall accuracy of 75% in the spatial prediction of soil subgroups. The producer accuracy (PA) and user accuracy (UA) results showed that the two classes of Gypsic Haploxerepts and Lithic Xerorthents, which were excluded when training using imbalanced datasets in RF and BRT algorithms, showed significant improvement after balancing the data. Results show that they were well predicted in RF algorithm (UA =100%, 78%) and BRT algorithm (UA= 60% and 70%) using treated data. Also, these minority classes showed Producer accuracy in RF algorithm (PA= 75%, 88%) and BRT algorithm (PA=100%, 78%) in compared to zero accuracy when training using imbalanced data. On the other hand, the validation results of the MNLR algorithm showed that despite maintaining the minority classes after balancing the data, the minority classes were predicted with less accuracy. Results showed that modeling using imbalanced distribution of class observation caused uncertain maps with minority classes being lost and relatively poor accuracies. After data treatment, with over- and under-sampling, all models showed significant improvement in maintaining the minority classes, in evaluations. Data resampling technique can be a useful solution for dealing with imbalanced class observations to produce more certain digital soil maps.Keywords: Boosted Regression Trees, Data Pretreatment, Oversampling, Resampling Methods, Minority Class
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.