به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

computational intelligence

در نشریات گروه منابع طبیعی
تکرار جستجوی کلیدواژه computational intelligence در نشریات گروه کشاورزی
تکرار جستجوی کلیدواژه computational intelligence در مقالات مجلات علمی
  • جهانبخش محمدی، علیرضا وفایی نژاد*، سعید بهزادی، حسین آقامحمدی، امیرهومن حمصی

    خشک سالی یکی از مهم ترین بلایای طبیعی است که اثرات مخرب و زیان باری در زمینه های مختلف اقتصادی، اجتماعی و زیست محیطی به جای می گذارد. با توجه به رفتار تکرارشوندگی این پدیده، در صورت عدم اجرای راهکارهای مناسب، آثار مخرب آن تا سال ها پس از وقوع می تواند در منطقه باقی بماند. اکثر بحران های طبیعی از قبیل سیل، زلزله، طوفان و رانش زمین در دوره ای کوتاه ممکن است خسارات سنگین مالی و جانی به جامعه وارد کنند، اما خشک سالی ماهیت آرام و خزشی دارد و آثار مخرب آن به تدریج و در مدت طولانی تری ظاهر می شود. ازاین رو با مدل سازی خشک سالی می توان طرح هایی جهت آماده سازی در مقابل خشک سالی و کاهش خسارات ناشی از آن ارایه کرد. در این پژوهش از الگوریتم های هوش محاسباتی شبکه عصبی پرسپترون چندلایه (Multi-Layer Perceptron)، شبکه عصبی رگرسیونی تعمیم یافته (Generalized Regression Neural Network)، رگرسیون بردار پشتیبان با کرنل گوسین (Support Vector Regression) و رگرسیون بردار پشتیبان با کرنل پیشنهادی (Support Vector Regression New kernel) جهت مدل سازی خشک سالی با در نظر گرفتن شاخص استانداردشده بارش Standardized Precipitation Index) (استفاده شده است. نتایج مدل سازی ها در اغلب حالات بیانگر کارایی بهتر مدل پیشنهادی SVR_N نسبت به دیگر مدل ها بود که در SPI 48 ماهه بهترین دقت مدل سازی حاصل گردید و مقدار RMSE و R2 به ترتیب برابر 093/0 و 991/0 به دست آمد. همچنین مدل های GRNN، MLP و SVR به ترتیب بعد از SVR_N کارایی بهتری در مدل سازی از خود نشان دادند. نتایج این تحقیق بیانگر اهمیت انتخاب و بهینه سازی کرنل بر رفتار مدل سازی پدیده خشک سالی در مدل سازی به روش رگرسیون بردار پشتیبان است.

    کلید واژگان: هوش محاسباتی، شبکه عصبی، کرنل، رگرسیون بردار پشتیبان
    Jahanbakhsh Mohammadi, Alireza Vafaeinezhad *, Saeed Behzadi, Hossein Aghamohammadi, Amirhooman Hemmasi

    Drought is one of the most important natural disasters with devastating and harmful effects in various economic, social, and environmental fields. Due to the repetitive behavior of this phenomenon, if the appropriate solutions are not implemented, its destructive effects can remain in the region for years after its occurrence. Most natural disasters, such as floods, earthquakes, hurricanes, and landslides in the short term, can cause severe financial and human damage to society, but droughts are slow-moving and creepy in nature, and their devastating effects appear gradually and over a longer period of time. Therefore, by modeling drought, it is possible to provide plans for drought preparation and reduce the damage caused by it. In this study, computational intelligence algorithms of Multi-Layer Perceptron neural network, Generalized Regression Neural Network, Support Vector Regression with support kernel, and Support Vector regression with the proposed kernel (Support Vector) Regression New kernel has been used to model the drought using the Standardized Precipitation Index. The modeling results, in most cases, showed better performance of the proposed SVR_N model than other models. The values of RMSE and R2 were 0.093 and 0.991, respectively, and the GRNN, MLP, and SVR models performed better in modeling after SVR_N, respectively. Modeling of drought phenomenon in modeling is supported by vector regression method.

    Keywords: Computational Intelligence, Neural Network, Kernel, Support Vector Regression
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال