choroidal segmentation
در نشریات گروه پزشکی-
Background
Automatic segmentation of the choroid on optical coherence tomography (OCT) images helps ophthalmologists in diagnosing eye pathologies. Compared to manual segmentations, it is faster and is not affected by human errors. The presence of the large speckle noise in the OCT images limits the automatic segmentation and interpretation of them. To solve this problem, a new curvelet transform‑based K‑SVD method is proposed in this study. Furthermore, the dataset was manually segmented by a retinal ophthalmologist to draw a comparison with the proposed automatic segmentation technique.
MethodsIn this study, curvelet transform‑based K‑SVD dictionary learning and Lucy‑Richardson algorithm were used to remove the speckle noise from OCT images. The Outer/Inner Choroidal Boundaries (O/ICB) were determined utilizing graph theory. The area between ICB and outer choroidal boundary was considered as the choroidal region.
ResultsThe proposed method was evaluated on our dataset and the average dice similarity coefficient (DSC) was calculated to be 92.14% ± 3.30% between automatic and manual segmented regions. Moreover, by applying the latest presented open‑source algorithm by Mazzaferri et al. on our dataset, the mean DSC was calculated to be 55.75% ± 14.54%.
ConclusionsA significant similarity was observed between automatic and manual segmentations. Automatic segmentation of the choroidal layer could be also utilized in large‑scale quantitative studies of the choroid.
Keywords: Choroidal segmentation, curvelet transform, graph theory, image processing, opticalcoherence tomography
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.