image segmentation
در نشریات گروه پزشکی-
سابقه و هدف
در کرانیوسینوستوز یک یا چند سوچور جمجمه به شکل زودرس بسته می شوند که می تواند منجر به ناهنجاری شکل جمجمه و یا حتی افزایش فشار داخل جمجمه و اشکال مختلف تاخیر تکاملی کودک شود. در کرانیوسینوستوز ساژیتال، قطر قدامی خلفی جمجمه افزایش می یابد. ایندکس جمجمه مهم ترین شاخص برای تشخیص و پایش بیماران مبتلا به این بیماری است. ایندکس جمجمه عمومآ با اندازه گیری مستقیم ابعاد سر شیرخوار و یا استفاده از سی تی اسکن جمجمه تعیین می شود. اگر بتوان با استفاده از تکنیک های هوشمند، شکل جمجمه را از روی تصاویر معمول دیجیتال سر شیرخواران تعیین کرد، می توان به پزشکان و والدین در تشخیص زود هنگام این ناهنجاری، پایش بهتر نتایج درمان و کاهش هزینه ها کمک کرد.
روش کاردر این مطالعه تشخیصی با راه اندازی یک روش علمی اجرایی، سعی در تعیین خودکار ایندکس جمجمه شیرخواران مبتلا به سینوستوز ساژیتال (با استفاده از تصاویر دیجیتال روتین سر آنها) بر اساس الگوریتم شبیه سازی تبریدی شده است. اطلاعات مربوط به 59 شیرخوار مبتلا به سینوستوز ساژیتال که در بیمارستان کودکان مفید تهران جراحی شده بودند، بررسی شد و شاخص جمجمه آنها (مقدار نرمال بین 85درصد- 75درصد)، با استفاده از الگوریتم پیشنهادی تعیین و با مقادیر اندازه گیری شده توسط جراح مغز و اعصاب کودکان با استفاده از نرم افزار متلب مقایسه شد.
یافته هاالگوریتم پیشنهادی با دقت قابل قبولی ایندکس جمجمه را در بیماران مورد مطالعه محاسبه کرد. ایندکس جمجمه توسط الگوریتم شبیه سازی تبریدی با میانگین 72/04و انحراف معیار 5/21 گزارش شد که اختلاف کمی با مقادیر ایندکس جمجمه اندازه گیری شده توسط جراح با میانگین 72/21و انحراف معیار 5/08 دارد. ارزیابی آماری ما با استفاده از آزمون t زوجی نشان می دهد که تفاوت معناداری بین دو گروه وجود ندارد (0/52 = p-value). مقادیر اندازه گیری شده توسط این روش در 55 بیمار از 59 بیمار مورد مطالعه (93/2درصد) در بازه مقادیر مطلوب تعیین شده توسط عامل انسانی قرار دارند (0/8≤ P).
نتیجه گیریبه نظر می رسد روش پیشنهادی می تواند با دقت قابل قبولی با استفاده از عکس های روتین سر بیماران، مقدار ایندکس جمجمه را محاسبه کند. با توسعه این روش ممکن است بتوان به پزشکان و والدین در تشخیص زود هنگام این ناهنجاری و پایش بهتر نتایج درمان و کاهش هزینه ها کمک کرد.
کلید واژگان: کرانیوسینوستوز، ایندکس جمجمه، قطعه بندی تصویر، الگوریتم شبیه سازی تبریدیBackground and AimAt least one main suture of the skull is closed prematurely in craniosynostosis, which may lead to different skull and face deformities and various types of child developmental delay. Increased posterior-anterior diameter of the skull is the main characteristic of sagittal craniosynostosis. The cranial index is the most important parameter for diagnosing and monitoring children with this deformity. This index is generally determined by direct measuring of infant’s head dimensions or using skull CT scan. Artificial intelligence-based techniques could identify the shape of the head from routine digital photos of a child and therefore, that may play a useful role in assisting physicians and parents with early diagnosis of skull anomaly, better intervention follow- up, and reducing medical system financial costs.
MethodsIn this diagnostic study, by developing an executive scientific method, automatic measurement of the cranial index in sagittal craniosynostotic infants based on a simulated annealing algorithm was done (by using routine digital photos of their heads). Pre-operative photos of 59 patients operated in Mofid children hospital (Tehran, Iran); were processed, and the cranial index (normal value between 75% to 85%) was calculated with the proposed algorithm and compared with pediatric neurosurgeon measured values using Matlab software.
ResultsThe proposed algorithm calculated the cranial index with acceptable accuracy. The simulated annealing algorithm determined the cranial index with the mean of 72.04 and the standard deviation of 5.21, which have minimal differences with surgeon-measured values with the mean of 72.21 and the standard deviation of 5.08. In the statistical investigation, using paired t-test, there was no statistically significant differences between these two methods (p-value = 0.52). The values measured by this method in 55 patients out of 59 studied patients (93.2%) are in the range of optimal values determined by the specialist (P ≤ 0.8).
ConclusionIt seems that the proposed method could determine the cranial index from routine digital patient’s head photos with acceptable accuracy. More development of this method may assist physicians and parents in early diagnosis of this anomaly, better monitoring of treatment results, and reducing medical financial costs.
Keywords: Craniosynostosis, Cranial index, Image segmentation, Simulated annealing -
Background
Chest computed tomography (CT) scan is one of the most common tools used for the diagnosis of patients with coronavirus disease 2019 (COVID-19). While segmentation of COVID-19 lung lesions by radiologists can be time-consuming, the application of advanced deep learning techniques for automated segmentation can be a promising step toward the management of this infection and similar diseases in the future.
ObjectivesThis study aimed to evaluate the performance and generalizability of deep learning-based models for the automated segmentation of COVID-19 lung lesions.
Patients and MethodsFour datasets (2 private and 2 public) were used in this study. The first and second private datasets included 297 (147 healthy and 150 COVID-19 cases) and 82 COVID-19 subjects. The public datasets included the COVID19-P20 (20 COVID-19 cases from 2 centers) and the MosMedData datasets (50 COVID-19 patients from a single center). Model comparisons were made based on the Dice similarity coefficient (DSC), receiver operating characteristic (ROC) curve, and area under the curve (AUC). The predicted CT severity scores by the model were compared with those of radiologists by measuring the Pearson’s correlation coefficients (PCC). Also, DSC was used to compare the inter-rater agreement of the model and expert against that of 2 experts on an unseen dataset. Finally, the generalizability of the model was evaluated, and a simple calibration strategy was proposed.
ResultsThe VGG16-UNet model showed the best performance across both private datasets, with a DSC of 84.23% ± 1.73% on the first private dataset and 56.61% ± 1.48% on the second private dataset. Similar results were obtained on public datasets, with a DSC of 60.10% ± 2.34% on the COVID19-P20 dataset and 66.28% ± 2.80% on a combined dataset of COVID19-P20 and MosMedData. The predicted CT severity scores of the model were compared against those of radiologists and were found to be 0.89 and 0.85 on the first private dataset and 0.77 and 0.74 on the second private dataset for the right and left lungs, respectively. Moreover, the model trained on the first private dataset was examined on the second private dataset and compared against the radiologist, which revealed a performance gap of 5.74% based on DSCs. A calibration strategy was employed to reduce this gap to 0.53%.
ConclusionThe results demonstrated the potential of the proposed model in localizing COVID-19 lesions on CT scans across multiple datasets; its accuracy competed with the radiologists and could assist them in diagnostic and treatment procedures. The effect of model calibration on the performance of an unseen dataset was also reported, increasing the DSC by more than 5%.
Keywords: COVID-19, Computed Tomography, Deep Learning, Image Segmentation -
مقدمه
گلوکوم در بعضی کشورها شایع ترین علت کوری می باشد. در این میان عرصه پردازش تصاویر شبکیه به منظور ارایه سیستم هایی اتوماتیک جهت تشخیص بیماری پیشنهاد شده است. در بین روش های پردازش تصاویر پزشکی، قطعه بندی تصویر به عنوان فرآیند شناسایی و تغییر در نمایش یک تصویر است. هدف این تحقیق استفاده از روش قطعه بندی و مقایسه آن با الگوریتم های گذشته است تا بتوان با دقت بهتری، نسبت به کارهای گذشته تشخیص دیسک اپتیک شبکیه چشم را تشخیص داد.
روشدر پژوهش تحلیلی حاضر، با استفاده از روش قطعه بندی تصویر به هر پیکسل، برچسبی اختصاص داده می شود، به طوری که پیکسل هایی با برچسب یکسان، ویژگی های مشابهی دارند. اقدام به قطعه بندی دیسک اپتیک شبکیه شد. با استفاده از نرم افزار متلب تصاویر شبکیه مبتلا به گلوکوم چشم وارد محیط برنامه شدند و خروجی ایده آل به دست آمد.
نتایجتحلیل کمی بر روی نتایج به دست آمده دقت بالای 85% روش پیشنهادی را برای بخش بندی دیسک اپتیک شبکیه چشم نشان داد. به طوری که با استفاده از نتایج می توان به بهترین نحو، فرد مبتلا به بیماری گلوکوم را تشخیص داد.
نتیجه گیری:
هدف قطعه بندی یک تصویر این است که داده های خام به شکل قابل استفاده تری برای پردازش های آماری بعدی درآیند. انتظار می رود در آینده استخراج ویژگی با دقت بیشتری انجام شود و جزییات بیشتری جهت بازشناسی اشیاء در تصویر، در اختیار سیستم های بینایی ماشین قرار بگیرد.
کلید واژگان: گلوکوم، تصاویر شبکیه، دیسک اپتیک، قطعه بندی تصویرIntroductionGlaucoma is the most common cause of blindness in some countries. In the meantime, the field of retinal image processing has been proposed in order to provide automatic systems for disease diagnosis. Among the methods of medical image processing, image segmentation is a process of identification and change in the display of an image. The objective of this study was to use the segmentation method and compare it with previous algorithms so as to be able to diagnose retinal optic disc more accurately.
MethodIn the present analytical study, using the image segmentation method, each pixel was assigned a label in such a way that pixels with the same label had similar characteristics. The optic disc segmentation was performed. Using MATLAB software, retinal images of patients with glaucoma were entered into the program and an ideal output was obtained.
ResultsThe quantitative analysis of the obtained results showed a high accuracy (85%) for the proposed method for the segmentation of the retinal optic disc; thus, the results can be used to efficiently diagnose a person with glaucoma.
ConclusionThe purpose of segmenting an image is to make raw data more usable for subsequent statistical processing. It is expected that in the future, feature extraction be more accurate, and more details be available to machine vision systems to identify objects in the images.
Keywords: Glaucoma, Retinal Images, Optic disc, Image Segmentation -
IntroductionProstate-specific membrane antigen (PSMA) has been demonstrated as a promising tool for specific imaging of prostate cancer (PCa) via positron emission tomography-computed tomography (PET/CT) scanning. Radiation treatment planning (RTP) based on 68Ga-PSMA PET/CT scanning can also lead to some decision modifications. The specific goal of this comparative study is to show how 68Ga-PSMA PET/CT images can influence the target volume delineation (TVD) and normal tissue radiation dose for PCa RTP, and to compare gross tumor volumes (GTVs) delineated using various strategies for 68Ga-PSMA PET-based image segmentation techniques.MethodsThis study consisted of eleven 68Ga-PSMA PET/CT images related to patients affected with locally advanced PCa. Four strategies also included manual segmentation techniques, a 2.5 standardized uptake value (SUV) cutoff (SUV=2.5), as well as a fixed threshold of 40% and 50% of the maximum signal intensity (SUV=%40 SUVmax and SUV=%50 SUVmax) for 68Ga-PSMA PET-based segmentation techniques to delineate GTVPET. Two treatment planning were accordingly generated for each patient based on manual GTVPET and CT-only.ResultsThe GTV was statistically and significantly smaller for PET/CT-derived volumes (9.39 vs. 77.98 cm3 for CT alone) (p<0.002). There was no significant difference in volumes of GTV2.5 and GTV40% with GTVman (p=0.11) although we observed a significant difference in volumes of GTV50% with GTVman (p=0.02). Mean bladder dose (MBD), V50 of rectum, and mean femoral dose (MFD) for PET/CT plans were significantly lower than CT-only (22.36 vs. 46.55 Gy; p=0.004), (33% vs. 67.82%; p=0.000), and (28.01 vs. 37.12Gy; p=0.013); respectively.ConclusionThe contribution of hybrid modalities of PSMA-PET/CT can be useful for detailed target volume planning and reduce radiation exposure to organs at risk. Using molecular images in RTP also demonstrates the biological volume of GTV so that it will not be left out of the field to cause recurrent tumor.Keywords: 68Ga-PSMA PET, CT Scanning, prostate cancer, Image segmentation, Radiation treatment planning
-
BackgroundIn order to evaluate the growth rate of lung cancer, pulmonary nodule segmentation is an essential and crucial step. Segmentation of juxta-pleural pulmonary nodule in CT scans, especially small size ones, is still a challenge.ObjectivesTo better support the following radiomics analysis, this study aims to propose and develop a novel segmentation method for small-size juxta-pleural pulmonary nodules.Materials and MethodsIn this study, we investigated and developed a novel approach based on transition region thresholding and chain code analysis to segment juxta-pleural pulmonary nodules. First, we cropped the region of interest (ROI) from the lung CT scans, and enhanced the nodule regions by using an anisotropic diffusion algorithm. Second, to extract the foreground pixels (including the attached chest wall) from ROIs, we applied an adaptive segmentation process by incorporating a threshold segmentation method with transition region analysis. Third, we smoothed the lung contour by using iterative weighted averaging algorithm. Then, we utilized chain code analysis to repair lung parenchyma boundaries. Finally, we obtained the segmentation result by overlapping the extracted foreground with the repaired lung parenchyma mask.ResultsTo validate the performance of the proposed segmentation approach, we selected 50 juxta-pleural nodules with diameter ranges from 5 mm to 10 mm from Lung Image Database Consortium (LIDC) database. Compared with the ground truth generated by radiologists, we achieved an average overlap rate of 76.93% ± 0.06 with a false positive rate of 13.09% ± 0.09.ConclusionAfter comparing and analyzing the segmentation results, we found that our approach outperformed the method reported in other literature. The experimental results demonstrated that our new method is an effective approach to segment small-size juxta-pleural pulmonary nodules accurately.Keywords: Pulmonary Nodule, Image Segmentation, Transition Region, Iterative Weighted Averaging, Chain Code
-
زمینهمشاهده، دسته بندی و شمارش انواع مختلف گلبول های سفید در نمونه خون، یکی از گام های اساسی در درمان بیماری های مختلف است. هدف از انجام این پژوهش طراحی و پیاده سازی سیستمی سریع، قابل اعتماد و مبتنی بر پردازش تصاویر میکروسکوپی نمونه خون برای طبقه بندی چهار نوع از گلبول های سفید است.مواد و روش هادر این مقاله، از روش خوشه بندی k-means اصلاح شده برای انجام عمل بخش بندی تصویر استفاده شده است. علاوه بر این، عمل طبقه بندی گلبول های سفید با استفاده از یک شبکه عصبی کانولوشنی عمیق و با کمک داده های موجود در پایگاه داده MISP – پایگاه داده رایگان و متشکل از تصاویر میکروسکوپی نمونه خون – انجام شده است. همچنین، روش های مختلف رگولاریزاسیون مثل حذف تصادفی و افزایش تعداد تصاویر پایگاه داده، برای جلوگیری از بیش برازش (Overfitting) مدل پیشنهادی مورد استفاده قرار گرفته اند.یافته هادر بخش طبقه بندی، دقت شبکه عصبی برابر 99 درصد اندازه گیری شده است که نسبت به بسیاری از پژوهش های پیشین موفق تر بوده است. همچنین در بخش بخش بندی، شاخص اطلاعات متقابل برابر 73/0 حاصل شد.نتیجه گیرینتایج حاصل از این پژوهش نشان می دهد طراحی و پیاده سازی سیستمی سریع و قابل اعتماد با کمک پردازش تصاویر میکروسکوپی نمونه خون با استفاده از روش های مختلف پردازش تصویر و یادگیری ماشین امکان پذیر است.کلید واژگان: بخش بندی تصویر، طبقه بندی تصویر، شبکه های عصبی عمیق، تصاویر میکروسکوپی نمونه خون، گلبول سفید، شبکه عصبی کانولوشنیBackgroundObservation, categorize and count various types of white blood cells in a blood sample is a One of the most important steps in the treatment of various diseases. The aim of this study was to design and implement a fast and reliable and based on the processing of microscopic images of blood samples for the classification of four types of white blood cells.Materials And MethodsIn this article, the modified k-means clustering method is used to perform image segmentation. Furthermore, The classification of white blood cells was done using a deep convolutional neural network and with the help of data in the MISP database, a free database composed of microscopic blood sample images. Moreover, Several regularization techniques such as dropout and image augmentation were applied to prevent the network from overfitting.ResultsIn the classification category, the accuracy of the neural network is measured to be 99%, which has been more successful than many earlier studies. In the segmentation section, the cross-reference index was 0.73.ConclusionThe results of this research show that rapid and reliable system design and implementation is possible by processing the microscopic images of the blood sample using different methods of image processing and machine learning.Keywords: Image segmentation, image classification, deep neural networks, microscopic images of blood samples, white blood cell, convolutional neural network
-
Background And Objectives
Identification of surgical instruments in laparoscopic video images has several biomedical applications. While several methods have been proposed for accurate detection of surgical instruments, the accuracy of these methods is still challenged high complexity of the laparoscopic video images. This paper introduces a Surgical Instrument Detection Framework (SIDF) for accurate identification of surgical instruments in complex laparoscopic video frames.
MethodsBased on the Generalized Near-Set Theory, a novel image segmentation algorithm, termed Generalized Near-Set Theory-based Image Segmentation Algorithm (GNSTISA) was developed. According to SIDF, first GNSTISA is executed to segment the laparoscopic images. Next, the segments generated by GNSTISA are filtered based on their color and texture. The remaining segments would then indicate surgical instruments.
FindingsUsing the laparoscopic videos of varicocele surgeries obtained from Hasheminezhad Kidney Center, the performance of GNSTISA was compared with previous image segmentation methods. The results showed that GNSTISA outperforms the earlier algorithms in term of accurate segmentation of laparoscopic images. Moreover, the accuracy of SIDF in identifying the surgical instruments was found superior to that of other methods.
ConclusionsSIDF eliminates the limitations of previous image segmentation methods, and can be used for precise identification of surgical instrument detection.
Keywords: Laparoscopy, Surgical instrument detection, Image segmentation, Generalized Near, set Theory
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.