kinect sensor
در نشریات گروه پزشکی-
Background
Autism spectrum disorders are a type of developmental disorder that primarily disrupt social interactions and communications. Autism has no treatment, but early diagnosis of it is crucial to reduce these effects. The incidence of autism is represented in repetitive patterns of children’s motion. When walking, these children tighten their muscles and cannot control and maintain their body position. Autism is not only a mental health disorder but also a movement disorder.
MethodThis study aims to identify autistic children based on data recorded from their gait patterns using a Kinect sensor. The database used in this study comprises walking information, such as joint positions and angles between joints, of 50 autistic and 50 healthy children. Two groups of features were extracted from the Kinect data in this study. The first one was statistical features of joints’ position and angles between joints. The second group was the features based on medical knowledge about autistic children’s behaviors. Then, extracted features were evaluated through statistical tests, and optimal features were selected. Finally, these selected features were classified by naïve Bayes, support vector machine, k‑nearest neighbors, and ensemble classifier.
ResultsThe highest classification accuracy for medical knowledge‑based features was 87% with 86% sensitivity and 88% specificity using an ensemble classifier; for statistical features, 84% of accuracy was obtained with 86% sensitivity and 82% specificity using naïve Bayes.
ConclusionThe dimension of the resulted feature vector based on autistic children’s medical knowledge was 16, with an accuracy of 87%, showing the superiority of these features compared to 42 statistical features.
Keywords: Autism, Classification, Gait Pattern, Kinect Sensor, Statistical Features -
مقدمه
اوتیسم نوعی اختلال رشدی است که در درجه اول تعاملات و ارتباطات اجتماعی را مختل می سازد. این اختلال درمان قطعی ندارد بنابراین تشخیص زودهنگام برای کاهش این اثرات مهم است. هدف از این مطالعه شناسایی افراد مبتلا به اوتیسم براساس اطلاعات ثبت شده از الگوی راه رفتن آن ها به وسیله حسگر کینکت است.
روش بررسیدر این پژوهش با استفاده از روش یادگیری ماشین مبتنی بر اطلاعات ثبت شده از موقعیت قرارگیری مفاصل هنگام راه رفتن توسط حسگر کینکت، افراد مبتلا به اوتیسم شناسایی شدند. ابتدا، گروه ویژگی های آماری از دادگان کینکت استخراج شد که شامل موقعیت مفاصل و زوایای بین آن ها است. سپس ویژگی های استخراج شده با استفاده از آزمون آماری تحلیل واریانس بررسی و ویژگی های بهینه انتخاب شدند. در نهایت با استفاده از طبقه بند درخت تصمیم طبقه بندی انجام شد.
یافته هادر این مقاله با استفاده از طبقه بند درخت تصمیم و 42 ویژگی بهینه انتخاب شده مبتنی بر تحلیل آماری، طبقه بندی گروه سالم و بیمار انجام شد و صحت 85 درصد به دست آمد. میزان حساسیت و ویژه بودن به دست آمده در این طبقه بندی، به ترتیب 88 و 82 درصد است.
نتیجه گیریبا توجه به نتایج طبقه بندی انجام شده، مشاهده می شود که این پژوهش توانست با استفاده از بردار ویژگی با بعد کم که به وسیله تحلیل آماری به دست آمده بود، به صحت قابل قبولی دست یابد. در این پژوهش نشان داده شد که تنها با داشتن موقعیت قرارگیری چند مفصل می توان افراد مبتلا به اوتیسم را از افراد سالم طبقه بندی کرد. پیشنهاد می گردد در پژوهش های آتی با استفاده از این روش میزان بهبودی یا کنترل اوتیسم در افراد را پس از انجام روش های درمانی اندازه گیری کنند.
کلید واژگان: مفاصل، اوتیسم، حسگر کینکت، ویژگی های آماری، درخت تصمیم، طبقه بندیIntroductionAutism is classified as a developmental disorder and primarily disrupts social interactions and communication. This disorder has no definitive treatment, making early diagnosis crucial for mitigating its effects. The purpose of this study is to identify autistic individuals based on the recorded information of their walking pattern by Kinect sensor.
MethodsIn this research, the machine learning method was employed to identify autistic individuals based on recorded joint position data during walking, recorded by the Kinect sensor. First, a group of statistical features was extracted from the Kinect data, which included joint positions and the angles between them. Then, the extracted features were evaluated using the statistical test of analysis of variance, and the optimal features were selected. Finally, classification was performed by decision tree classifier.
ResultsIn this research, the classification of healthy and autistic individuals was done by the decision tree classification and 42 optimal features selected based on statistical analysis, and the accuracy of classification was 85%. The sensitivity and specificity obtained in this classification are 88 and 82%, respectively.
ConclusionAccording to the classification results, this research was able to achieve acceptable accuracy by using the low dimension feature vector obtained by statistical analysis. This research, shows autistic individuals can be classified from healthy people only by having the position of several joints. It is suggested researches in future, using this method for measurement the recovery rate or control autism in patient after performing treatment methods.
Keywords: Joints, Autism, Kinect Sensor, Statistical Features, Decision Tree, Classification -
Background
Taking into consideration the inversion of the age pyramid in the coming years and the limitations and diseases that predispose the elderly to episodes of falling, it is necessary to develop resources that can address postural balance in this population. The use of virtual rehabilitation, i.e., rehabilitation using electronic platforms, has been increasing due to the increased treatment adherence observed with these methods.
ObjectivesThis study was conducted to evaluate the effectiveness of a rehabilitation program using the Kinect sensor (KS) on the postural balance of the elderly.
MethodsThis was a non-randomized controlled clinical trial in which 10 elderly subjects and 10 younger adults underwent a 10-session rehabilitation protocol lasting 20 minutes per session. Each session involved muscle stretching and motor coordination exercises, as well as use of the KS. The period between the evaluations was five weeks, and the sessions were held three times per week. The initial and final evaluations included the Berg Balance Scale (BBS), the Timed Up and Go (TUG) test and the tandem Romberg test.
ResultsAfter treatment with the KS, the elderly required a longer time to perform the TUG test and had lower static balance results in the tandem Romberg test compared to younger adults; however, there were no significant differences between the pre- and post-treatment values for these two tests within either group (P > 0.05). The elderly scored lower on the BBS than the younger adults both before and after treatment (P = 0.0001 and P = 0.0006, respectively). However, the elderly showed a balance gain according to the BBS scores between the pre- and post-treatment evaluations (P = 0.005), which did not occur in the younger adults (P = 0.31).
ConclusionsThe KS is able to promote improvements in static and dynamic postural balance in the elderly, who reached a condition close to what was observed in young adults. This improvement is evident when evaluating the changes using the BBS
Keywords: Aged, Balance Control, Kinect Sensor, Berg Balance Scale
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.