به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

osem algorithm

در نشریات گروه پزشکی
تکرار جستجوی کلیدواژه osem algorithm در مقالات مجلات علمی
  • سمیه علائی، اکبر عبدی سرای*، احمد بیطرفان رجبی، محمدعلی عسگری، مهسا نوری اصل
    زمینه و هدف

    در پزشکی هسته ای می توان بجای تحقیق و بررسی بر روی بیمار و یا پردازش تصویر بیمار، تصاویر شبیه سازی شده را مورد بررسی قرار داد. لذا هدف این مطالعه ارزیابی کمی اصلاح تضعیف و پراکندگی پرتوها در اسکن پرفیوژن قلب به روش با استفاده از شبیه سازی مونت کارلو ECG-Gated SPECT بود.

    روش کار

    در این مطالعه تاثیر اعمال تصحیح تضعیف و پراکندگی به روش های دو پنجره انرژیی (DEW) و سه پنجره انرژی (TEW) در تصویربرداری اسپکت قلب مورد بررسی و ارزیابی قرار گرفت و برای شبیه سازی تصویربرداری اسپکت قلب، از کد اختصاصی شبیه سار مونت کارلو GATE به عنوان سیستم تصویربرداری اسپکت و از فانتوم دیجیتال XCAT با توزیع اکتیویته و نقشه تضعیف مطابق با واقعیت برای مدل سازی تنه انسان استفاده شد.

    یافته ها

    مقایسه بهبود کنتراست تصاویر در حالت های مختلف اعمال تصحیح تضعیف و پراکندگی نشان می دهد که بیشترین کنتراست تصویر از روش (TEW1+AC) با میانگین 25% افزایش حاصل می شود و MSE در حالت های مختلف اعمال تصحیح تضعیف و پراکندگی در مقایسه با تصویر مرجع از 5/51 % تا 5/54 % کاهش یافته بود. MSE در مقایسه با تصویر مرجع از 4/1 در Un_Cor تا 15/1، 13/1، 12/1 و 14/1 به ترتیب در AC+TEW1، AC+DEW، AC وAC+TEW2 کاهش یافت و نسبت سیگنال به نویز (SNR) در تمام روش های اعمال اصلاح پراکندگی همراه با اصلاح تضعیف در مقایسه با اعمال اصلاح تضعیف (AC) تا 71% افزایش نشان داد.

    نتیجه گیری

    بر طبق نتایج کمی سازی تصاویر بازسازی شده با بکارگیری اعمال تصحیح پراکندگی همراه با اعمال تصحیح تضعیف امکان پذیر است.

    کلید واژگان: الگوریتم OSEM، تصحیح پراکندگی GATE، تصحیح تضعیف، XCAT
    Somayeh Alaei, Akbar Abdi Saray*, Ahmad Bitarafan Rajabi, Mohammadali Asgari, Mahsa Noori Asl
    Background & Aims

    Nowadays, imaging of the blood supply of the heart muscle by single photon emission computed tomography (SPECT: Single Photon Emission Computed Tomography) due to its non-invasive nature and providing information with physiological value and low cost compared to the valuable angiography method. It is highly diagnostic. But these images undergo changes and artifacts under the influence of factors, the result of which is the reduction of the diagnostic accuracy of the images and false positive cases. During the detection process, several physical effects such as attenuation, scattering, and collimator response function affect the frequency of emitted photons; this leads to the destruction of the contrast and as a result of reducing the quantitative and qualitative accuracy of the images. Attenuation, as the most destructive factor of SPECT images, reduces the quality of SPECT images of heart blood supply and reduces the sensitivity of tests related to the diagnosis of coronary artery diseases, and for non-uniform environments, especially in nuclear imaging of chest areas. And the heart is necessary to produce a map of patient attenuation coefficients. The existence of scattered photons is also one of the main factors of error in quantization; the detection of scattered events affects the contrast of the lesions and causes the lack of image resolution and signal-to-noise ratio. Therefore, to correct the attenuation and scattering of the rays in the heart images quantitatively and qualitatively, patterns are needed in SPECT systems. Due to the importance of the topic, various research groups around the world have presented their research and results on correcting the effect of scattering of rays and also correcting the effect of weakening the rays. If there was no limitation of energy resolution, it was easily possible to identify the scattered rays and prevent them from being recorded in the image. Because we know that scattered rays lose energy. Because gamma rays are single energy and their energy amount is completely known. Therefore, each photon with less energy will represent scattered rays, but due to the limited energy resolution of the gamma camera, a range is usually considered on the sides of the main energy, which is called the energy window. It is assumed that the photons recorded in this energy range are primary photons, but in fact, many photons scattered in the body are also recorded in this window. These scattered rays do not carry correct spatial information and lead to a decrease in image resolution and contrast and quantization errors in the image. In nuclear medicine, instead of researching and examining the patient or processing the image of the patient, simulated images can be examined. Simulators can provide information about each of the image destruction factors. The purpose of this research is to propose a new method for scattering correction, in this research, a combination of Monte Carlo and modeling is used for the rapid production of scattered views, and in the proposed method, the two-matrix method is used, this method At the stage of generating mathematical views, dispersion is added and this problem leads to the removal of scattered rays. As a result, an image is reconstructed that is free from the effects of attenuation and non-ideal dispersion and leads to an increase in contrast and improvement of power. Detecting waste, increasing the signal-to-noise ratio, and increasing the accuracy of quantification.

    Methods

    In this study, the effect of applying attenuation and dispersion correction using two energy windows (DEW) and three energy windows (TEW) methods in cardiac aspect imaging was investigated and evaluated, and to simulate cardiac aspect imaging, a special code similar to SAR Monte Carlo GATE was used as the SPECT imaging system and XCAT digital phantom with activity distribution and realistic attenuation map was used to model the human trunk.

    Results

    Comparison of image contrast improvement in different modes of attenuation and dispersion correction shows that the highest image contrast is obtained from the (TEW1+AC) method with an average increase of 25% and MSE in different modes of attenuation correction. And the dispersion compared to the reference image was reduced from 51.5% to 54.5%. Compared to the reference image, MSE decreased from 1.4 in Un_Cor to 1.15, 1.13, 1.12, and 1.14 in AC+TEW1, AC+DEW, AC, and AC+TEW2, respectively, and the signal-to-noise ratio (SNR) increased up to 71% in all methods of applying dispersion correction along with attenuation correction compared to applying attenuation correction (AC).

    Conclusion

    In this study, the effect of attenuation and dispersion correction in 5 non-correction modes, with attenuation correction, attenuation, and dispersion correction using two-window and three-window methods with triangular approximation and three-window with trapezoidal approximation on We evaluated XCAT phantom simulated images and heart muscle perfusion images by SPECT method and 4 different parameters were used to compare and evaluate the images, including profile, contrast, mean squared error (MSE) and signal to noise. According to the results of the quantification of reconstructed images, it is possible to apply dispersion correction along with attenuation correction.

    Keywords: OSEM algorithm, GATE scattering correction, Attenuation correction, XCAT
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال