به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

predicting engineering properties

در نشریات گروه پزشکی
تکرار جستجوی کلیدواژه predicting engineering properties در مقالات مجلات علمی
  • Fatemeh Koushki, Hamid Tavakolipour, Mohsen Mokhtarian *
    Background

    The use of machine learning techniques such as artificial neural networks (ANN) improves the performance and speed of prediction processes as well as their reliability in the design of agricultural processing machines. Machine learning as a subset of artificial intelligence makes it possible to develop a unique way to create a predictive model system in the form of a known dataset by developing machine learning models (MLM).

    Materials and Methods

    In this study, first the geometric properties of pistachio kernels including the major diameter (L), intermediate diameter (T), minor diameter (W), geometric mean diameter (Dg), and surface area (S) were calculated at four moisture levels of 4.33, 22.64, 29.11, and 41.35% (w.b). Then, the data obtained in this step were used as the input values (L, W & T) and the output value (S) into the machine learning system. Multi-layer perceptron (MLP) and radial basis functions (RBF) were used as two machine learning models to predict the surface area of pistachio kernel during rehydration.

    Results

    The data analysis revealed that the neural network model of RBF with 42 neurons in the hidden layer (N1st=42) had the lowest mean relative error (MRE=0.01414), and the highest coefficient of determination (R2=0.954) and chosen as the best model for predicting the surface area of pistachio kernel.

    Conclusion

    Following the findings of this study, it can be concluded that the MLM as one of new forecasting techniques can be used to estimate the engineering properties of agricultural products.

    Keywords: Pistachio (Pistacia Vera L.), Artificial Neural Network, Machine Learning System, Modeling, Predicting Engineering Properties
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال