به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

predictive modeling

در نشریات گروه پزشکی
تکرار جستجوی کلیدواژه predictive modeling در مقالات مجلات علمی
  • Mohammadamin Khojastehnezhad, Pouya Youseflee, Ali Moradi, Nafiseh Jirofti *, Mohammad H. Ebrahimzadeh

    Artificial Intelligence (AI) is rapidly transforming healthcare, particularly in orthopedics, by enhancing diagnostic accuracy, surgical planning, and personalized treatment. This review explores current applications of AI in orthopedics, focusing on its contributions to diagnostics and surgical procedures. Key methodologies such as artificial neural networks (ANNs), convolutional neural networks (CNNs), support vector machines (SVMs), and ensemble learning have significantly improved diagnostic precision and patient care. For instance, CNN-based models excel in tasks like fracture detection and osteoarthritis grading, achieving high sensitivity and specificity. In surgical contexts, AI enhances procedures through robotic assistance and optimized preoperative planning, aiding in prosthetic sizing and minimizing complications. Additionally, predictive analytics during postoperative care enable tailored rehabilitation programs that improve recovery times. Despite these advancements, challenges such as data standardization and algorithm transparency hinder widespread adoption. Addressing these issues is crucial for maximizing AI's potential in orthopedic practice. This review emphasizes the synergistic relationship between AI and clinical expertise, highlighting opportunities to enhance diagnostics and streamline surgical procedures, ultimately driving patient-centric care.        Level of evidence: V

    Keywords: Artificial Intelligence, Diagnostic Imaging, Machine Learning, Orthopedics, Personalized Treatment, Predictive Modeling, Robotic Surgery
  • سارا قاسمی، مجید غیور مبرهن، حبیب الله اسماعیلی، ثریا خفری*
    مقدمه

    سندرم متابولیک (Metabolic syndrome (MetS)) یک وضعیت پیچیده است که به صورت گروهی از اختلالات متابولیک ظاهر می شود و با شیوع برخی از بیماری ها مرتبط است. پیش بینی زودهنگام خطر MetS در جمعیت میانسالان، می تواند برای کنترل و جلوگیری از ابتلا به بیماری های قلبی-عروقی موثر باشد. هدف این مطالعه، استفاده از رگرسیون لجستیک برای پیش بینی سندرم متابولیک و یافتن فاکتورهای خطر مرتبط با این سندرم است.

    روش کار

    در این مطالعه کوهورت، عوامل مرتبط با سندرم متابولیک در مطالعه Mashhad study، که شامل در مجموع 11570 شرکت کننده است، بررسی شد. با استفاده از رگرسیون لجستیک، فاکتورهایی که نسبت شانس ابتلا به سندرم متابولیک را افزایش می دهند، ارزیابی شد و مدل سازی پیش بینی با استفاده از رگرسیون لجستیک انجام شد.

    یافته ها

    نتایج آنالیز با استفاده از مدل رگرسیون لجستیک نشان می دهد عواملی مانند شاخص توده بدنی، سابقه چربی خون بالا، سابقه فشار خون بالا و دیابت، نسبت خطر ابتلا به سندرم متابولیک را افزایش می دهند، همچنین شاخص هایی مانند کم تحرکی، سطح بالای اوره خون، محتوای هموگلوبین گلبول های قرمز، افزایش سن، جنسیت زن، سطوح بالای گاماگلوتامیل ترانسفراز کبدی و اسید اوریک خون، خطر ابتلا به سندرم متابولیک را افزایش می دهند.

    نتیجه گیری

    به نظر می رسد شاخص توده بدنی، سابقه دیابت و بیماری قلبی در مقایسه با شاخص های دیگر از جمله سابقه چربی خون، فشار خون، کم تحرکی، اوره خون، اسید اوریک و محتوای هموگلوبین گلبول های قرمز خون با افزایش نسبت شانس ابتلا به سندرم رابطه دارد.

    کلید واژگان: سندرم متابولیک، عوامل خطر، رگرسیون لجستیک، مدل سازی پیش بینی
    Sara Ghasemi, Majid Ghaour-Mobarhan, Habibullah Esmaeili, Soraya Khafri*
    Introduction

    Metabolic syndrome (MetS) is a complex condition manifested as a group of metabolic disorders and is associated with the prevalence of certain diseases. Early prediction of MetS risk in the middle-aged population can be effective in controlling and preventing cardiovascular diseases. This study aimed to use logistic regression to predict metabolic syndrome and identify risk factors related to this condition.

    Method

    This cohort study investigated factors associated with metabolic syndrome in the Mashhad study, which included a total of 11,570 participants. Factors that increase the relative risk of metabolic syndrome were evaluated using logistic regression, and predictive modeling was performed using logistic regression.

    Results

    The results of the analysis using the logistic regression model showed that some factors, such as body mass index, history of high blood lipids, history of high blood pressure, and diabetes, increased the risk of metabolic syndrome. Various indicators, such as inactivity, high blood urea level, red blood cell hemoglobin content, aging, female gender, high levels of liver gamma-glutamyl transferase, and blood uric acid increase the risk of developing metabolic syndrome.

    Conclusion

    It seems that body mass index, history of diabetes, and heart disease are related to the relative risk of developing the MetS syndrome compared to the other indicators, such as history of blood lipids, sedentary blood pressure, blood urea, uric acid, and hemoglobin content of red blood cells. These findings were obtained using the logistic regression model.

    Keywords: Logistic Regression, Metabolic Syndrome, Predictive Modeling, Risk Factors
  • Jaleh Shoshtarian Malak, Samira Alsaeidi*, Fatemeh Haji Ali Asgari, Fahimeh Khedmatkon
    Introduction

    Prediction of Wegener's granulomatosis diagnosis and relapse is a complex process. In this study, we applied machine learning algorithms to predict Wegener's granulomatosis relapse.

    Methods

    In this research, 189 patients admitted to Amiralam Hospital were studied and followed for approximately 2 years. Patient features included demographics, organ involvement, symptoms, and other clinical data. Different popular machine learning algorithms were applied for predicting Wegener's granulomatosis relapse, including Support Vector Machines, Random Forest, Gradient Boosting, and XGBoost algorithms. The prediction model performance was measured for the different candidate prediction algorithms using accuracy, precision, recall, and F1-measure. The selected prediction model performance was calculated based on different relapse rates and major relapse occurrence according to Birmingham Vasculitis Activity Score (BVAS) fields.

    Results

    Applying different machine learning algorithms, the XGBoost algorithm performed the best. The results indicated that the prediction model's performance increased when calculating higher relapse rate possibilities. The XGBoost model had 82% accuracy while predicting more than one relapse rate and 92% accuracy in predicting more than twice the relapse rate. We also calculated the SHAP value for the prediction model. The results indicated that Cr, BVAS, lymphocyte percentage, vitamin D, nose involvement, alkaline phosphatase, diagnosis age, white blood cell count, erythrocyte sedimentation rate, and initial nose presentation are the 10 most important features according to SHAP value.

    Conclusion

    In this study, we have developed Wegener's granulomatosis relapse prediction model using machine learning algorithms. We achieved reasonable precision and recall for early prediction and decisionmaking regarding Wegener's granulomatosis relapse.

    Keywords: Wegener's granulomatosisrelapse, Relapse prediction, Machine learning, Clinical decision-making, Xgboost algorithm, Birmingham vasculitisactivity score, Predictive modeling, Healthcare analytics, Autoimmune diseases, Precision medicine
  • Sara Mohamadi, Saeid Khanzadi *, Abdollah Jamshidi, Mohammad Azizzadeh

    Staphylococcus aureus is among the major causes of foodborne outbreaks globally. To limit its potential risks and predict its growth behaviors, it is crucial to define the growth boundaries of Staphylococcus aureus. So, this experiment was designed to estimate the growth behavior of Staphylococcus aureus in brain heart infusion (BHI) broth while affected by various concentrations of Carum copticum EO (0, 0.015, 0.030, 0.045%), pH (5, 6, 7), temperature (25, 35 ˚C), and inoculum levels (103, 105 CFU ml-1). The assay was performed with 48 treatment conditions in triplicate. Visible turbidity represents growth onset was checked daily during 30 days of trial. According to the accelerated failure time (AFT) approach, a parametric survival model was chosen to predict the impact of selected variables on Staphylococcus aureus growth. GC-MS assay had quantified sixteen (16) compounds constituting 98.88% of pure oil. Based on our findings, the major components of essential oil were identified as thymol (57.18%), ρ-cymene (22.55%), γ-terpinene (13.07%), and trans-anethole (1.7%). The MIC value of the EO was 0.625 μl ml-1. The median time to detection of bacterial growth was six days. All the predictor variables showed a significant effect on time to initiate the bacterial growth (p < 0.05). The ultimate model could precisely estimate the growth responses of Staphylococcus aureus.

    Keywords: Carum copticum essential oil, Predictive modeling, Staphylococcus aureus
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال