به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

spline regression

در نشریات گروه پزشکی
تکرار جستجوی کلیدواژه spline regression در مقالات مجلات علمی
  • Maryam Yazdanparast, Razieh Sheikhpour*, Morteza Zangeneh Soroush, Fatemeh Ghanizadeh
    Background

    Microarray technology enables the examination of gene expression in thousands of genes and can be highly effective in identifying various types of cancers, including leukemia. However, many genes in microarray data are redundant and lack useful information for cancer diagnosis. The main objective of this study is to identify relevant and effective genes in classification of leukemia microarray data using a spline regression-based method, taking into account the correlation between genes.

    Materials and Methods

    In this analytical study, leukemia microarray data are used to identify relevant genes in classification of leukemia into Acute Myeloid Leukemia (AML) and Acute Lymphoblastic Leukemia (ALL) using a spline regression-based gene selection method, called SRS3FS based on ℓ2,p-norm (0 < p ≤ 1). Subsequently, the support vector machine (SVM) algorithm is employed to classify leukemia data into AML and ALL.

    Results

    In this study, the classification results of SVM algorithm for 5, 10, 15, and 20 genes reveal that the SRS3FS method, employing ℓ2,1/4-norm, ℓ2,1/2-norm and ℓ2,3/4-norm, exhibited the highest accuracy of 97.06% when identifying 10 genes for distinguishing between AML and ALL. Moreover, the leukemia data was classified into AML and ALL with an accuracy of 100%, using a gene identified by the SRS3FS method based on ℓ2,3/4-norm and ℓ2,1-norm. The gene labeled as number 3252, annotated as GLUTATHIONE S-TRANSFERASE, MICROSOMAL, is recognized as the most important gene.

    Conclusion

    The experimental results on leukemia microarray data demonstrate that the spline regression-based gene selection method can effectively identify relevant genes in classification and prediction of leukemia.

    Keywords: Acute lymphocytic leukemia, Acute myeloid leukemia, Gene expression, Sparse gene selection, Spline regression
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال