asghar ahmadkhanlu
-
The main aim of this paper is to study a kind of boundary value problem with an integral boundary condition including Hadamard-type fractional differential equations. To do this, upper and lower solutions are used to guarantee their existence, and Schauder’s fixed point theorem is used to prove the uniqueness of the positive solutions to this problem. An illustrated example is presented to explain the theorems that have been proved.Keywords: Hadamard Fractional Derivative, Boundary Value Problem, Integral Boundary Condition
-
We investigate the existence and uniqueness of the solution and also the rate of convergence of a numerical method for a fractional differential equation in both q-calculus and (p, q)-calculus versions. We use the Banach and Schauder fixed point theorems in this study. We provide two examples, one by definition of the q-derivative and the other by (p, q)-derivative. We compare the rate of convergence of the numerical method. We like to clear some facts on (p, q)-calculus. The data from our numerical calculations show well that q-calculus works better than (p, q)-calculus in each case.
Keywords: q-Derivative, (p, q)-Derivative, Fixed point, Generalization, Caputo derivative, Numerical algorithm -
The aim of this work is to prove the existence and uniqueness of the positive solutions for a fractional boundary value problem by a parameterized integral boundary condition with p-Laplacian operator. By using iteration sequence, the existence of two solutions is proved. Also by applying a fixed point theorem on solid cone, the result for the uniqueness of a positive solution to the problem is obtained. Two examples are given to confirm our results.Keywords: Fractional differential equations, P-Laplacian operator, Integral Boundary Condition
-
در این مقاله نوعی مسئله مقدار مرزی شامل یک معادله دیفرانسیل مرتبه کسری را بررسی می کنیم. مسئله را از لحاظ وجود و یگانگی جواب های مثبت بررسی می کنیم که در آن مشتق مرتبه کسری از نوع ریمن-لیوویل است. ابتدا تابع گرین محاسبه می شود سپس ثابت می شود تابع گرین مثبت است و با تعیین سوپریمم انتگرال تابع گرین روی بازه جواب و با استفاده از برخی تعمیم هایی که اخیرا برای نگاشت های -انقباضی ارائه شده است، شرایط لازم و کافی را برای وجود و یگانگی جواب مثبت این مسئله تعیین می کیم. بدین منظور که ابتدا با استفاده از وجود جواب پایینی برای مسئله فوق و استفاده از تعمیم نگاشت های -انقباضی روی فضای مرتب، وجود ویگانگی جواب مثبت ثابت می شود سپس با استفاده از تعمیم دیگری از نگاشت های -انقباضی روی فضای مرتب وجود و یگانگی جواب مثبت مسئله ثابت می شود. هم چنین مثالی برای تشریح نتایج ثابت شده ارائه می شود.کلید واژگان: مسائل مقدار مرزی، معادلات دیفرانسیل مرتبه کسری، مشتق کسری ریمن لیوویل، قضیه نقطه ثابتIn this paper we investigate a kind of boundary value problem involving a fractional differential equation. We study the existence of positive solutions of the problem that fractional derivative is the Reimann-Liouville fractional derivative. At first the green function is computed then it is proved that the green function is positive. We present necessary and sufficient conditions for existence of positive solution by calculating supremum of integral of green function over the solution interval and by use of some expansions of contraction mapping that are presented recently. For this purpose, at first the existence and uniqueness of solution for the problem, by use of existence of lower solution for the problem and expansion of contraction mapping on ordered space, is proved. Then by use of another expansion of contraction mapping on ordered spaces, the existence and uniqueness of positive solution is proved. Also, an example is presented to illustrate the proven results.Keywords: Boundary value problem, Fractional differential equations, Reimman Liouville fractional derivatve, Fixed Point theorem
-
In this paper has been studied the wave equation in some non-classic cases. In the rst case boundary conditions are non-local and non-periodic. At that case the associated spectral problem is a self-adjoint problem and consequently the eigenvalues are real. But the second case the associated spectral problem is non-self-adjoint and consequently the eigenvalues are complex numbers,in which two cases, the solutions of the problem are constructed by Fourier method. By compatibility conditions and asymptotic expansions of the Fourier coe cients, the convergence of series solutions are proved. At last series solution are established and the uniqueness of the solution is proved by a special way which has not been used in classic texts.Keywords: Wave equation, Non, local, amp, Non, periodic Boundary Conditions, Asymptotic Expansion
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.